如圖,三棱錐P-ABC中,PC
平面ABC,PC=AC=2,AB=BC,D是PB上一點,且CD
平面PAB
(1)求證:AB
平面PCB;
(2)求異面直線AP與BC所成角的大;
(3)求二面角C-PA-B 的大小的余弦值。
(1)
PC
平面ABC,AB
平面ABC,
PC
AB,
CD
平面PAB,AB
平面PAB,
CD
AB。又
,
AB
平面PCB (2)
(3)
試題分析:(1)
PC
平面ABC,AB
平面ABC,
PC
AB,
CD
平面PAB,AB
平面PAB,
CD
AB。又
,
AB
平面PCB
(2)由(1)AB
平面PCB ,
PC=AC=2, 又
AB=BC, 可求得BC=
以B為原點,如圖建立空間直角坐標系,
則A(0,
,0),B(0,0,0), C(
,0,0) P(
,0,2)
=(
,-
,2),
=(
,0,0) 則
=
+0+0=2
異面直線AP與BC所成的角為
(3)設平面PAB的法向量為m=(x,y,z)
=(0,-
,0),
=(
,
,2)
則
,即,得m=(
,0,-1)設平面PAC的法向量為n=(x,y,z)
=(0,0,-2),
=(
,-
,0),則
得n=(1,1,0)cos<m,n>=
二面角C-PA-B大小的余弦值為
點評:線面垂直的判定定理:一條直線垂直于平面內(nèi)兩條相交直線,則直線垂直于平面,向量法求兩直線所成角,二面角時首先找到直線的方向向量和平面的法向量,通過求解向量夾角的到相應角
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:單選題
長方體
中,
,
,
為
的中點,則異面直線
與
所成角的余弦值為
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
在長方體ABCD-A
1B
1C
1D
1中,AB=1,AD=2.若存在各棱長均相等的四面體P
1P
2P
3P
4,其中P
1,P
2,P
3,P
4分別在棱AB,A
1B
1,C
1D
1,CD所在的直線上,則此長方體的體積為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖所示,在四面體
中,
,
,
兩兩互相垂直,且
.
(1)求證:平面
平面
;
(2)求二面角
的大;
(3)若直線
與平面
所成的角為
,求線段
的長度.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
已知四棱錐
中,側棱都相等,底面是邊長為
的正方形,底面中心為
,以
為直徑的球經(jīng)過側棱中點,則該球的體積為( )
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,四棱錐P—ABCD中,底面ABCD是邊長為
的正方形E, F分別為PC,BD的中點,側面PAD⊥底面ABCD,且PA=PD=
AD.
(Ⅰ)求證:EF//平面PAD;
(Ⅱ)求三棱錐C—PBD的體積.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,
平面
,
,
,
,
分別為
的中點.
(I)證明:
平面
;
(II)求
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在三棱錐
中,側面
與側面
均為等邊三角形,
,
為
中點.
(Ⅰ)證明:
平面
;
(Ⅱ)求異面直線BS與AC所成角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
是雙曲線
上一點,
、
分別是雙曲線
的左、右頂點,直線
,
的斜率之積為
.
(1)求雙曲線的離心率;
(2)過雙曲線
的右焦點且斜率為1的直線交雙曲線于
,
兩點,
為坐標原點,
為雙曲線上一點,滿足
,求
的值.
查看答案和解析>>