設(shè),橢圓方程為,拋物線方程為.如圖所示,過點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為,已知拋物線在點(diǎn)的切線經(jīng)過橢圓的右焦點(diǎn)
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn),使得為直角三角形?若存在,請指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).
解:(1)由,
當(dāng)G點(diǎn)的坐標(biāo)為,
,
過點(diǎn)G的切線方程為
,點(diǎn)的坐標(biāo)為
由橢圓方程得點(diǎn)的坐標(biāo)為,,
即橢圓和拋物線的方程分別為
(2)軸的垂線與拋物線只有一個(gè)交點(diǎn),
為直角的只有一個(gè),同理為直角的只有一個(gè)。
若以為直角,設(shè)點(diǎn)坐標(biāo)為
、兩點(diǎn)的坐標(biāo)分別為,
。
關(guān)于的二次方程有一大于零的解,有兩解,即以為直角的有兩個(gè),
因此拋物線上存在四個(gè)點(diǎn)使得為直角三角形。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上,離心率為,橢圓上的點(diǎn)到焦點(diǎn)距離的最大值為
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若過點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:(a>b>0)的離心率為,其左、右焦點(diǎn)分別是F1、F2,點(diǎn)P是坐標(biāo)平面內(nèi)的一點(diǎn),且|OP|=·(點(diǎn)O為坐標(biāo)原點(diǎn)).
(Ⅰ)求橢圓C的方程;
(Ⅱ)直線y=x與橢圓C在第一象限交于A點(diǎn),若橢圓C上兩點(diǎn)M、N使
λ,λ∈(0,2)求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓經(jīng)過點(diǎn)(,),且它的左焦點(diǎn)F1將長軸分成2∶1,F(xiàn)2是橢圓的右焦點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)P是橢圓上不同于左右頂點(diǎn)的動點(diǎn),延長F1P至Q,使Q、F2關(guān)于∠F1PF2的外角平分線l對稱,求F2Q與l的交點(diǎn)M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題


(本小題滿分12分)
已知橢圓的一個(gè)焦點(diǎn)為F1(-1,0),對應(yīng)的準(zhǔn)線方程為,且離心率e滿足:成等差數(shù)列。

(1)求橢圓C方程;
(2)如圖,拋物線的一段與橢圓C的一段圍成封閉圖形,點(diǎn)N(1,0)在x軸上,又A、B兩點(diǎn)分別在拋物線及橢圓上,且AB//x軸,求△NAB的周長的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩點(diǎn)、,且的等差中項(xiàng),則動點(diǎn)的軌跡方程是(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓的左右焦點(diǎn)分別為,P為橢圓上一點(diǎn),且
,則橢圓的離心率e=__________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.       已知定圓圓心為A;動圓M過點(diǎn)且與圓A相切,圓心M 的坐標(biāo)為,它的軌跡記為C。
(1)求曲線C的方程;
(2)過一點(diǎn)N(1,0)作兩條互相垂直的直線與曲線C分別交于點(diǎn)P和Q,試問這兩條直線能否使得向量互相垂直?若存在,求出點(diǎn)P,Q的橫坐標(biāo),若不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點(diǎn),曲線C是坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線,過點(diǎn)F1的直線曲線C于x軸上方兩個(gè)不同點(diǎn)P、Q,點(diǎn)P關(guān)于x軸的對稱點(diǎn)為M,設(shè)
(I)求,求直線的斜率k的取值范圍;
(II)求證:直線MQ過定點(diǎn)。

查看答案和解析>>

同步練習(xí)冊答案