(本小題滿分12分)
已知F1、F2分別是橢圓的左、右焦點(diǎn),曲線C是坐標(biāo)原點(diǎn)為頂點(diǎn),以F2為焦點(diǎn)的拋物線,過點(diǎn)F1的直線曲線C于x軸上方兩個(gè)不同點(diǎn)P、Q,點(diǎn)P關(guān)于x軸的對(duì)稱點(diǎn)為M,設(shè)
(I)求,求直線的斜率k的取值范圍;
(II)求證:直線MQ過定點(diǎn)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分13分)
已知橢圓為其左、右焦點(diǎn),為橢圓上任一點(diǎn),的重心為,內(nèi)心,且有(其中為實(shí)數(shù))
(1)求橢圓的離心率;
(2)過焦點(diǎn)的直線與橢圓相交于點(diǎn)、,若面積的最大值為3,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),橢圓方程為,拋物線方程為.如圖所示,過點(diǎn)軸的平行線,與拋物線在第一象限的交點(diǎn)為,已知拋物線在點(diǎn)的切線經(jīng)過橢圓的右焦點(diǎn)
(1)求滿足條件的橢圓方程和拋物線方程;
(2)設(shè)分別是橢圓長軸的左、右端點(diǎn),試探究在拋物線上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
已知點(diǎn),過點(diǎn)作拋物線的切線,切點(diǎn)在第二象限,如圖.(Ⅰ)求切點(diǎn)的縱坐標(biāo);
(Ⅱ)若離心率為的橢圓恰好經(jīng)過切點(diǎn),設(shè)切線交橢圓的另一點(diǎn)為,記切線的斜率分別為,若,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)
橢圓的兩個(gè)焦點(diǎn)F1、F2,點(diǎn)P在橢圓C上,且PF1⊥F1F2,且|PF1|=
(I)求橢圓C的方程。
(II)以此橢圓的上頂點(diǎn)B為直角頂點(diǎn)作橢圓的內(nèi)接等腰直角三角形ABC,這樣的直角三角形是否存在?若存在,請(qǐng)說明有幾個(gè);若不存在,請(qǐng)說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知為橢圓的左、右頂點(diǎn),為其右焦點(diǎn),是橢圓上異于,的動(dòng)點(diǎn),且面積的最大值為
(Ⅰ)求橢圓的方程及離心率;
(Ⅱ)直線與橢圓在點(diǎn)處的切線交于點(diǎn),當(dāng)直線繞點(diǎn)轉(zhuǎn)動(dòng)時(shí),試判斷以
為直徑的圓與直線的位置關(guān)系,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若M(x,y)是橢圓x2+=1上的動(dòng)點(diǎn),則x+2y的最大值為       .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

到定點(diǎn)(2,0)與到定直線x=8的距離之比為的動(dòng)點(diǎn)的軌跡方程是  (    )                             
A B. C    D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓和雙曲線有相同的焦點(diǎn)F1、F2,點(diǎn)P為橢圓和雙曲線的一個(gè)交點(diǎn),則|PF1|·|PF2|的值是       

查看答案和解析>>

同步練習(xí)冊(cè)答案