【題目】已知冪函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上是增函數(shù),則f(2)的值為________

【答案】16

【解析】因為冪函數(shù)f(x)x (mZ)為偶函數(shù),且在(0,+∞)上是增函數(shù),

則指數(shù)是偶數(shù)且大于0,

因為-m2-2m+3=-(m+1)2+4≤4,

因此指數(shù)等于24,當指數(shù)等于2時,求得m非整數(shù),

所以m=-1,即f(x)=x4.

所以f(2)=24=16.

答案為:16.

點睛: 本題考查冪函數(shù)的圖象和性質(zhì),屬于基礎題.冪函數(shù)的圖象一定在第一象限內(nèi),一定不在第四象限,至于是否在第二、三象限內(nèi),要看函數(shù)的奇偶性;冪函數(shù)的圖象最多只能同時在兩個象限內(nèi);如果冪函數(shù)圖象與坐標軸相交,則交點一定是原點.對于函數(shù)f(x)xα,,函數(shù)在單調(diào)遞減;,函數(shù)在單調(diào)遞增;,函數(shù)為常函數(shù).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知兩個定點 ,動點P滿足 .設動點P的軌跡為曲線E,直線 .
(1)求曲線E的軌跡方程;
(2)若l與曲線E交于不同的C,D兩點,且 (O為坐標原點),求直線l的斜率;
(3)若 是直線l上的動點,過Q作曲線E的兩條切線QM,QN,切點為M,N,探究:直線MN是否過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在 上的奇函數(shù) 滿足: ,且在區(qū)間 上單調(diào)遞減,則不等式 的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,
(1)若 ,求 在區(qū)間 上的最小值;
(2)若 在區(qū)間 上有最大值 ,求實數(shù) 的值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,有一邊長為6的正方形鐵片,在鐵片的四角各截去一個邊長為x的小正方形后,沿圖中虛線部分折起,做成一個無蓋方盒.
(1)試用x表示方盒的容積V(x),并寫出x的范圍;
(2)求方盒容積V(x)的最大值及相應x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線l1ax3y60,l22x(a1)y60與圓Cx2y22xb21(b>0)的位置關系是“平行相交”,則實數(shù)b的取值范圍為 (   )

A. (, ) B. (0, )

C. (0 ) D. (, )(,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線lx軸上的截距比在y軸上的截距大1,且過點(6,-2),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知f(x)是定義在R上的奇函數(shù),且當x∈(0,+∞)時,f(x)=2018x+log2018x,則函數(shù)f(x)的零點個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是(
A.x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ <1“是“a>1“的必要不充分條件
C.命題“x∈R,使得x2+2x+3<0”的否定是“x∈R,都有x2+2x+3>0”
D.“若am2<bm2 , 則a<b”的逆命題為真命題

查看答案和解析>>

同步練習冊答案