【題目】如圖,有一邊長為6的正方形鐵片,在鐵片的四角各截去一個邊長為x的小正方形后,沿圖中虛線部分折起,做成一個無蓋方盒.
(1)試用x表示方盒的容積V(x),并寫出x的范圍;
(2)求方盒容積V(x)的最大值及相應(yīng)x的值.

【答案】
(1)解:由題意,無蓋方盒底面是邊長為6﹣2x的正方形,高為x,

從而有:V(x)=x(6﹣2x)2=4x3﹣24x2+36x,

其中,x滿足: ,∴0<x<3


(2)解:由(1)知:V(x)=4x3﹣24x2+36x,x∈(0,3),

V′(x)=12x2﹣48x+36=12(x﹣1)(x﹣3),

若0<x<1,則V′(x)>0;若1<x<3,則V′(x)<0,

∴V(x)在(0,1)上單調(diào)遞增,在(1,3)上單調(diào)遞減,

∴V(x)在x=1處取得極大值,也是最大值,

∴V(x)max=V(1)=16,

故方盒容積V(x)的最大值為16,相應(yīng)x的值為1


【解析】(1)求出方盒的容積V(x),根據(jù)邊長大于0,求出x的范圍即可;(2)求出v(x)的導(dǎo)數(shù),根據(jù)函數(shù)的單調(diào)性求出v(x)的最大值以及相應(yīng)x的值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱 中,點E,F(xiàn)分別是棱CC1 , BB1上的點,點M是線段AC上的動點,EC=2FB=2,若MB∥平面AEF,試判斷點M的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求傾斜角為直線y= +1的傾斜角的一半,且分別滿足下列條件的直線方程:(1)
【答案】解:∵直線l1:y= +1的斜率k1
∴直線l1的傾斜角為120°,∴所求直線的傾斜角為60°,斜率k= .
∵過點(-4,1),∴直線方程為y-1= (x+4)
(1)經(jīng)過點(-4,1)
(2)在y軸上的截距為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知F1、F2是某等軸雙曲線的兩個焦點,P為該雙曲線上一點,若PF1⊥PF2 , 則以F1、F2為焦點且經(jīng)過點P的橢圓的離心率是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p:|x﹣a|<3(a為常數(shù));q:代數(shù)式 有意義.
(1)若a=1,求使“p∧q”為真命題的實數(shù)x的取值范圍;
(2)若p是q成立的充分不必要條件,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)f(x)=x (m∈Z)為偶函數(shù),且在(0,+∞)上是增函數(shù),則f(2)的值為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】公元前300年歐幾里得提出一種算法,該算法程序框圖如圖所示.若輸入m=98,n=63,則輸出的m=(
A.7
B.28
C.17
D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+(x﹣c)|x﹣c|,a<0,c>0 (Ⅰ)當 時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù)f(x)的圖象在點P(x1 , f(x1)),Q(x2 , f(x2))兩處的切線分別為l1 , l2 . 若 ,且l1⊥l2 , 求實數(shù)c的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某產(chǎn)品出廠前需要依次通過三道嚴格的審核程序,三道審核程序通過的概率依次為 , , ,每道程序是相互獨立的,且一旦審核不通過就停止審核,該產(chǎn)品只有三道程序都通過才能出廠銷售 (Ⅰ)求審核過程中只通過兩道程序的概率;
(Ⅱ)現(xiàn)有3件該產(chǎn)品進入審核,記這3件產(chǎn)品可以出廠銷售的件數(shù)為X,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案