【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.
如圖,在陽馬中,側(cè)棱底面,且, 為中點,點在上,且平面,連接, .
(Ⅰ)證明: 平面;
(Ⅱ)試判斷四面體是否為鱉臑,若是,寫出其每個面的直角(只需寫出結(jié)論);若不是,說明理由;
(Ⅲ)已知, ,求二面角的余弦值.
【答案】(Ⅰ)見解析;(Ⅱ)見解析;(Ⅲ).
【解析】試題分析:
(1)利用線面垂直的判斷定理證明 垂直于平面 內(nèi)的兩條相交直線即可;
(2)利用空間幾何體的結(jié)構(gòu)特征判斷命題是否成立即可;
(3)利用題意建立空間直角坐標系,求得法向量,最后利用 求解角度值即可求得余弦值.
試題解析:
(Ⅰ)因為面, 面,所以.
因為四邊形為矩形,所以.
,所以面.
面, ,
在中, , 為中點,所以.
,
所以面.
(Ⅱ)四面體是鱉臑,其中, .
(Ⅲ)以, , 所在直線為軸, 軸, 軸建立空間直角坐標系. , , , , .
設(shè),則.
得解得.所以.
設(shè)平面的法向量,
令得, .
平面的法向量,
平面的法向量,
, .
二面角的余弦值為.
科目:高中數(shù)學 來源: 題型:
【題目】在一次招聘中,主考官要求應(yīng)聘者從6道備選題中一次性隨機抽取3道題,并獨立完成所抽取的3道題。甲能正確完成其中的4道題,乙能正確完成每道題的概率為,且每道題完成與否互不影響。
⑴記所抽取的3道題中,甲答對的題數(shù)為X,則X的分布列為____________;
⑵記乙能答對的題數(shù)為Y,則Y的期望為_________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】學校為了了解高三學生每天自主學習中國古典文學的時間,隨機抽取了高三男生和女生各50名進行問卷調(diào)查,其中每天自主學習中國古典文學的時間超過3小時的學生稱為“古文迷”,否則為“非古文迷”,調(diào)查結(jié)果如表:
古文迷 | 非古文迷 | 合計 | |
男生 | 26 | 24 | 50 |
女生 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據(jù)表中數(shù)據(jù)判斷能否有的把握認為“古文迷”與性別有關(guān)?
(2)先從調(diào)查的女生中按分層抽樣的方法抽出5人進行理科學習時間的調(diào)查,求所抽取的5人中“古文迷”和“非古文迷”的人數(shù);
(3)現(xiàn)從(2)中所抽取的5人中再隨機抽取3人進行體育鍛煉時間的調(diào)查,記這3人中“古文迷”的人數(shù)為,求隨機變量的分布列與數(shù)學期望.
參考數(shù)據(jù):
0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 | |
0.455 | 0.708 | 1.321 | 3.841 | 5.024 | 6.635 |
參考公式: ,其中.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙二人同時從地趕住地,甲先騎自行車到兩地的中點再改為跑步;乙先跑步到兩地的中點再改為騎自行車,最后兩人同時到達地.已知甲騎自行車比乙騎自行車的速度快,且兩人騎車的速度均大于跑步的速度.現(xiàn)將兩人離開地的距離與所用時間的函數(shù)關(guān)系用圖象表示如下:
則上述四個函數(shù)圖象中,甲、乙兩人運行的函數(shù)關(guān)系的圖象應(yīng)該分別是( )
A. 圖①、圖② B. 圖①、圖④ C. 圖③、圖② D. 圖③、圖④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合.對于, ,定義與之間的距離為.
(Ⅰ)寫出中的所有元素,并求兩元素間的距離的最大值;
(Ⅱ)若集合滿足: ,且任意兩元素間的距離均為2,求集合中元素個數(shù)的最大值并寫出此時的集合;
(Ⅲ)設(shè)集合, 中有個元素,記中所有兩元素間的距離的平均值為,證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一片森林原面積為.計劃從某年開始,每年砍伐一些樹林,且每年砍伐面積的百分比相等.并計劃砍伐到原面積的一半時,所用時間是10年.為保護生態(tài)環(huán)境,森林面積至少要保留原面積的.已知到今年為止,森林剩余面積為原面積的.
(1)求每年砍伐面積的百分比;
(2)到今年為止,該森林已砍伐了多少年?
(3)為保護生態(tài)環(huán)境,今后最多還能砍伐多少年?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)直線與橢圓交于、兩點,以為對角線作正方形,記直線與軸的交點為,問、兩點間距離是否為定值?如果是,求出定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某教研機構(gòu)隨機抽取某校20個班級,調(diào)查各班關(guān)注漢字聽寫大賽的學生人數(shù),根據(jù)所得數(shù)據(jù)的莖葉圖,以組距為5將數(shù)據(jù)分組成時,所作的頻率分布直方圖如圖所示,則原始莖葉圖可能是( )
A. B.
C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com