【題目】在數(shù)列{an}中,a1=4,nan+1﹣(n+1)an=2n2+2n.
(Ⅰ)求證:數(shù)列 是等差數(shù)列;
(Ⅱ)求數(shù)列 的前n項和Sn

【答案】解:(I)解法一:(Ⅰ) 的兩邊同時除以n(n+1), 得 ,(3分)
所以數(shù)列 是首項為4,公差為2的等差數(shù)列.
解法二:依題意,可得 ,
所以 ,
,
所以數(shù)列 是首項為4,公差為2的等差數(shù)列.
(Ⅱ)由(Ⅰ),得 ,(7分)
所以 ,故 ,
所以
=
=
【解析】(I)解法一: 的兩邊同時除以n(n+1), ,即可證明解法二:依題意,可得 ,可得 ,即可證明.(Ⅱ)由(Ⅰ),得 ,可得 , = .利用裂項求和方法即可得出.
【考點精析】掌握數(shù)列的前n項和和數(shù)列的通項公式是解答本題的根本,需要知道數(shù)列{an}的前n項和sn與通項an的關系;如果數(shù)列an的第n項與n之間的關系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面上, ,| |=| |=1, = + .若| |< ,則| |的取值范圍是(
A.(0, ]
B.( ]
C.( , ]
D.( , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ln(1+x)﹣ln(1﹣x),給出以下四個命題: ①x∈(﹣1,1),有f(﹣x)=﹣f(x);
x1 , x2∈(﹣1,1)且x1≠x2 , 有
x1 , x2∈(0,1),有 ;
x∈(﹣1,1),|f(x)|≥2|x|.
其中所有真命題的序號是(
A.①②
B.③④
C.①②③
D.①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正實數(shù)a,b,c,函數(shù)f(x)=|x+a||x+b|. (Ⅰ)若a=1,b=3,解關于x的不等式f(x)+x+1<0;
(Ⅱ)求證:f(1)f(c)≥16abc.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知關于不等式的解集為.

(1)當為空集時,求的取值范圍;

(2)在(1)的條件下,求的最小值;

(3)當不為空集,且時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐A﹣BCD中,平面ABD⊥平面BCD,AB=AD,∠CBD=60°,BD=2BC=4,點E在CD上,DE=2EC.
(Ⅰ)求證:AC⊥BE;
(Ⅱ)若二面角E﹣BA﹣D的余弦值為 ,求三棱錐A﹣BCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線經(jīng)過點,且斜率為

(I)求直線的方程;

)若直線平行,且點P到直線的距離為3,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下面幾種推理過程是演繹推理的是 (  )

A. 某校高三(1)班有55人,2班有54人,3班有52人,由此得高三所有班人數(shù)超過50

B. 兩條直線平行,同旁內(nèi)角互補,如果∠A與∠B是兩條平行直線的同旁內(nèi)角,則∠AB180°

C. 由平面三角形的性質(zhì),推測空間四邊形的性質(zhì)

D. 在數(shù)列{an}中,a11,an (an1)(n≥2),由此歸納出{an}的通項公

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的參數(shù)方程為 為參數(shù)),以坐標原點為極點,以x軸正半軸為極軸建立極坐標系,橢圓C的極坐標方程為 ,且直線l經(jīng)過橢圓C的右焦點F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點,求|FA||FB|的值.

查看答案和解析>>

同步練習冊答案