【題目】設(shè)等差數(shù)列{an}的公差為d,前n項(xiàng)和為Sn , 等比數(shù)列{bn}的公比為q,已知b1=a1 , b2=2,q=d,S10=100.
(1)求數(shù)列{an},{bn}的通項(xiàng)公式
(2)當(dāng)d>1時,記cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

【答案】
(1)解:設(shè)a1=a,由題意可得 ,

解得 ,或 ,

當(dāng) 時,an=2n﹣1,bn=2n1;

當(dāng) 時,an= (2n+79),bn=9


(2)解:當(dāng)d>1時,由(1)知an=2n﹣1,bn=2n1,

∴cn= = ,

∴Tn=1+3 +5 +7 +9 +…+(2n﹣1) ,

Tn=1 +3 +5 +7 +…+(2n﹣3) +(2n﹣1) ,

Tn=2+ + + + +…+ ﹣(2n﹣1) =3﹣ ,

∴Tn=6﹣


【解析】(1)利用前10項(xiàng)和與首項(xiàng)、公差的關(guān)系,聯(lián)立方程組計算即可(2)當(dāng)d>1時,由(1)知cn= ,寫出Tn、 Tn的表達(dá)式,利用錯位相減法及等比數(shù)列的求和公式,計算即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓M:x2+(y﹣2)2=r2(r>0)與曲線C:(y﹣2)(3x﹣4y+3)=0有三個不同的交點(diǎn).
(1)求圓M的方程;
(2)已知點(diǎn)Q是x軸上的動點(diǎn),QA,QB分別切圓M于A,B兩點(diǎn). ①若 ,求|MQ|及直線MQ的方程;
②求證:直線AB恒過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xoy中,已知橢圓C: =1(a>b>0)的離心率e= ,左頂點(diǎn)為A(﹣4,0),過點(diǎn)A作斜率為k(k≠0)的直線l交橢圓C于點(diǎn)D,交y軸于點(diǎn)E.

(1)求橢圓C的方程;
(2)已知P為AD的中點(diǎn),是否存在定點(diǎn)Q,對于任意的k(k≠0)都有OP⊥EQ,若存在,求出點(diǎn)Q的坐標(biāo);若不存在說明理由;
(3)若過O點(diǎn)作直線l的平行線交橢圓C于點(diǎn)M,求 的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC中A(3,﹣1),AB邊上的中線CM所在直線方程為6x+10y﹣59=0,∠B的平分線方程BT為x﹣4y+10=0.
(1)求頂點(diǎn)B的坐標(biāo);
(2)求直線BC的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖給出的是計算 的值的一個程序框圖,其中判斷框內(nèi)應(yīng)填入的條件是(

A.i≤2011
B.i>2011
C.i≤1005
D.i>1005

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“石頭、剪刀、布”,又稱“猜丁殼”,是一種流行多年的猜拳游戲,起源于中國,然后傳到日本、朝鮮等地,隨著亞歐貿(mào)易的不斷發(fā)展,它傳到了歐洲,到了近代逐漸風(fēng)靡世界.其游戲規(guī)則是:出拳之前雙方齊喊口令,然后在語音剛落時同時出拳,握緊的拳頭代表“石頭”,食指和中指伸出代表“剪刀”,五指伸開代表“布”.“石頭”勝“剪刀”、“剪刀”勝“布”、而“布”又勝過“石頭”.若所出的拳相同,則為和局.小軍和大明兩位同學(xué)進(jìn)行“五局三勝制”的“石頭、剪刀、布”游戲比賽,則小軍和大明比賽至第四局小軍勝出的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)F為拋物線C:y2=3x的焦點(diǎn),過F且傾斜角為30°的直線交C于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),則△OAB的面積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知菱形ABCD的頂點(diǎn)A,C在橢圓x2+3y2=4上,對角線BD所在直線的斜率為1.
(1)當(dāng)直線BD過點(diǎn)(0,1)時,求直線AC的方程;
(2)當(dāng)∠ABC=60°時,求菱形ABCD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)判斷函數(shù)f(x)在區(qū)間(0,1)和[1,+∞)上的單調(diào)性(不必證明);
(2)當(dāng)0<a<b,且f(a)=f(b)時,求 的值;
(3)若存在實(shí)數(shù)a,b(1<a<b)使得x∈[a,b]時,f(x)的取值范圍是[ma,mb](m≠0),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案