如圖,在正三棱錐S-ABC中,M、N分別為棱SC、BC的中點,并且AM⊥MN,若側棱長SA=
3
,則正三棱錐S-ABC的外接球的體積為( 。
A、
9
2
π
B、9π
C、12π
D、16π
考點:球的體積和表面積
專題:計算題,空間位置關系與距離
分析:由題意推出MN⊥平面SAC,即SB⊥平面SAC,∠ASB=∠BSC=∠ASC=90°,將此三棱錐補成正方體,則它們有相同的外接球,正方體的對角線就是球的直徑,求出直徑即可求出球的體積.
解答: 解:∵M,N分別為棱SC,BC的中點,∴MN∥SB
∵三棱錐S-ABC為正棱錐,
∴SB⊥AC(對棱互相垂直)
∴MN⊥AC
又∵MN⊥AM,而AM∩AC=A,
∴MN⊥平面SAC,
∴SB⊥平面SAC
∴∠ASB=∠BSC=∠ASC=90°
以SA,SB,SC為從同一定點S出發(fā)的正方體三條棱,將此三棱錐補成以正方體,則它們有相同的外接球,
正方體的對角線就是球的直徑.
∴2R=
3
SA=3,
∴R=
3
2
,
∴V=
4
3
πR3=
2

故選:A
點評:本題考查了三棱錐的外接球的體積,考查空間想象能力.三棱錐擴展為正方體,它的對角線長就是外接球的直徑,是解決本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點A(0,-1),當點B在曲線y=2x2+1上運動時,線段AB的中點M的軌跡方程是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=(1+x)2-2aln(1+x)(a∈R).
(Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)若a=1,x∈[0,1],求函數(shù)y=f(x)圖象上任意一點處切線斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的離心率為
2
2
,橢圓C的右焦點F2和拋物線y2=4
2
x的焦點重合,橢圓C與y軸的一個交點為N,且M是橢圓C的右頂點.
(1)求tan∠NF2M的值;
(2)當過點P(4,1)的動直線l與橢圓C相交于兩不同點A,B時,在線段AB上取點Q,滿足|
AP
|•|
QB
|-|
PB
|•|
AQ
|=
1-t2
+
t2-1
(t∈R),求點Q的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

M為拋物線y2=4x上一動點,F(xiàn)是焦點,P(5,4)是定點,則當|MP|+|MF|取最小值時點M的橫坐標是( 。
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,它的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=log2(2-ax)在[-1,+∞)為單調增函數(shù),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC和△DBC是兩個有公共斜邊的直角三角形,并且AB=AD=AC=2a,CD=
6
a.
(1)若P是AC邊上的一點,當△PBD的面積最小時,求二面角P-BD-A的平面角的正切值;
(2)能否找到一個球,使A,B,C,D都在該球面上,若不能,請說明理由;若能,求該球的內接圓柱的表面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,內角A,B,C對邊的邊長分別是a,b,c,已知c=2.
(Ⅰ)若C=
π
3
,且△ABC的面積等于
3
,求a,b;
(Ⅱ)若sinC+sin(B-A)=2sin2A,求a的取值范圍.

查看答案和解析>>

同步練習冊答案