精英家教網 > 高中數學 > 題目詳情

【題目】已知MOD函數是一個求余函數,記MOD(m,n)表示m除以n的余數,例如MOD(8,3)=2.如圖是某個算法的程序框圖,若輸入m的值為48時,則輸出i的值為(
A.7
B.8
C.9
D.10

【答案】C
【解析】解:模擬執(zhí)行程序框圖,可得: n=2,i=0,m=48,
滿足條件n≤48,滿足條件MOD(48,2)=0,i=1,n=3,
滿足條件n≤48,滿足條件MOD(48,3)=0,i=2,n=4,
滿足條件n≤48,滿足條件MOD(48,4)=0,i=3,n=5,
滿足條件n≤48,不滿足條件MOD(48,5)=0,n=6,

∈N* , 可得:2,3,4,6,8,12,16,24,48,
∴共要循環(huán)9次,故i=9.
故選:C.
模擬執(zhí)行程序框圖,根據題意,依次計算MOD(m,n)的值,由題意 ∈N* , 從而得解.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=ex﹣ax+a(a∈R),其中e為自然對數的底數.
(1)討論函數y=f(x)的單調性;
(2)函數y=f(x)的圖象與x軸交于A(x1 , 0),B(x2 , 0)兩點,x1<x2 , 點C在函數y=f(x)的圖象上,且△ABC為等腰直角三角形,記 ,求at﹣(a+t)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將函數y=sin(2x+ )圖象上的點M(θ, )(0<θ< )向右平移t(t>0)個單位長度得到點M′.若M′位于函數y=sin2x的圖象上,則(
A.θ= ,t的最小值為
B.θ= ,t的最小值為
C.θ= ,t的最小值為
D.θ= ,t的最小值為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正三角形ABE與菱形ABCD所在的平面互相垂直,AB=2,∠ABC=60°,M是AB的中點.

(I)求證:EM⊥AD;
(II)求二面角A﹣BE﹣C的余弦值;
(III)在線段EC上是否存在點P,使得直線AP與平面ABE所成的角為45°,若存在,求出 的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,平面平面,四邊形是全等的等腰梯形,其中,且,點的中點,點的中點.

(Ⅰ)求證: 平面;

(Ⅱ)請在圖中所給的點中找出兩個點,使得這兩點所在的直線與平面垂直,并給出證明;

(Ⅲ)在線段上是否存在點,使得平面?如果存在,求出的長度;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}滿足a1=1,an=logn(n+1)(n≥2,nN*).定義:使乘積a1·a2·a3……ak為正整數的k(kN*)叫做和諧數,則在區(qū)間[1,2018]內所有的和諧數的和為

A. 2036 B. 2048 C. 4083 D. 4096

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的離心率為,且過點.

(1)求橢圓方程;

(2)設不過原點的直線,與該橢圓交于兩點,直線的斜率依次為,滿足,試問:當變化時,是否為定值?若是,求出此定值,并證明你的結論;若不是請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的交點為F,準線為l,過點F的直線與拋物線交于M,N兩點,若MR⊥l,垂足為R,且∠NRM=∠NMR,則直線MN的斜率為(
A.±8
B.±4
C.±2
D.±2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓 1(a> )的右焦點為F,右頂點為A,已知 ,其中O為原點,e為橢圓的離心率.
(1)求橢圓的方程;
(2)設過點A的直線l與橢圓交于B(B不在x軸上),垂直于l的直線與l交于點M,與y軸交于點H,若BF⊥HF,且∠MOA=∠MAO,求直線l的斜率.

查看答案和解析>>

同步練習冊答案