【題目】如圖,平面平面,四邊形和是全等的等腰梯形,其中,且,點(diǎn)為的中點(diǎn),點(diǎn)是的中點(diǎn).
(Ⅰ)求證: 平面;
(Ⅱ)請(qǐng)?jiān)趫D中所給的點(diǎn)中找出兩個(gè)點(diǎn),使得這兩點(diǎn)所在的直線與平面垂直,并給出證明;
(Ⅲ)在線段上是否存在點(diǎn),使得平面?如果存在,求出的長(zhǎng)度;如果不存在,請(qǐng)說(shuō)明理由.
【答案】(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析 (Ⅲ)見(jiàn)解析
【解析】試題分析:(Ⅰ)由四邊形是等腰梯形,點(diǎn)為的中點(diǎn),點(diǎn)是的中點(diǎn),得,從而可證平面;(Ⅱ)依題意可證 ,再根據(jù)可證為菱形,即可證;(Ⅲ)假設(shè)存在點(diǎn),使得∥平面,可證為平行四邊形,從而推出∥平面,即可證∥平面,則為平行四邊形,從而推出矛盾,即可得出結(jié)論.
試題解析:(Ⅰ)∵四邊形是等腰梯形,點(diǎn)為的中點(diǎn),點(diǎn)是的中點(diǎn)
∴
又∵平面平面,平面平面
∴平面
(Ⅱ) 點(diǎn)為所求的點(diǎn)
∵平面
∴
又∵,且
∴為菱形
∴
∵,
∴平面
(Ⅲ)假設(shè)存在點(diǎn),使得∥平面
由,所以為平行四邊形,
∴∥
∵平面
∴∥平面
又∵
∴平面∥平面,
∴∥平面
∴∥,
∴為平行四邊形
∴,矛盾,
∴不存在點(diǎn),使得∥平面
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棉花的纖維長(zhǎng)度是評(píng)價(jià)棉花質(zhì)量的重要指標(biāo),某農(nóng)科所的專家在土壤環(huán)境不同的甲、乙兩塊實(shí)驗(yàn)地分別種植某品種的棉花,為了評(píng)價(jià)該品種的棉花質(zhì)量,在棉花成熟后,分別從甲、乙兩地的棉花中各隨機(jī)抽取20根棉花纖維進(jìn)行統(tǒng)計(jì),結(jié)果如下表:(記纖維長(zhǎng)度不低于300mm的為“長(zhǎng)纖維”,其余為“短纖維”)
纖維長(zhǎng)度 | (0,100) | [100,200) | [200,300) | [300,400) | [400,500] |
甲地(根數(shù)) | 3 | 4 | 4 | 5 | 4 |
乙地(根數(shù)) | 1 | 1 | 2 | 10 | 6 |
(1)由以上統(tǒng)計(jì)數(shù)據(jù),填寫下面2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為“纖維長(zhǎng)度與土壤環(huán)境有關(guān)系”.
甲地 | 乙地 | 總計(jì) | |
長(zhǎng)纖維 | |||
短纖維 | |||
總計(jì) |
附:(1) ;(2)臨界值表;
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)現(xiàn)從上述40根纖維中,按纖維長(zhǎng)度是否為“長(zhǎng)纖維”還是“短纖維”采用分層抽樣的方法抽取8根進(jìn)行檢測(cè),在這8根纖維中,記乙地“短纖維”的根數(shù)為X,求X的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側(cè)面PAD是邊長(zhǎng)為2的正三角形,AB=BD= ,PB=
(Ⅰ)求證:平面PAD⊥平面ABCD;
(Ⅱ)設(shè)Q是棱PC上的點(diǎn),當(dāng)PA∥平面BDQ時(shí),求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間,受煙花爆竹集中燃放影響,我國(guó)多數(shù)城市空氣中PM2.5濃度快速上升,特別是在大氣擴(kuò)散條件不利的情況下,空氣質(zhì)量在短時(shí)間內(nèi)會(huì)迅速惡化.2017年除夕18時(shí)和初一2時(shí),國(guó)家環(huán)保部門對(duì)8個(gè)城市空氣中PM2.5濃度監(jiān)測(cè)的數(shù)據(jù)如表(單位:微克/立方米).
除夕18時(shí)PM2.5濃度 | 初一2時(shí)PM2.5濃度 | |
北京 | 75 | 647 |
天津 | 66 | 400 |
石家莊 | 89 | 375 |
廊坊 | 102 | 399 |
太原 | 46 | 115 |
上海 | 16 | 17 |
南京 | 35 | 44 |
杭州 | 131 | 39 |
(Ⅰ)求這8個(gè)城市除夕18時(shí)空氣中PM2.5濃度的平均值;
(Ⅱ)環(huán)保部門發(fā)現(xiàn):除夕18時(shí)到初一2時(shí)空氣中PM2.5濃度上升不超過(guò)100的城市都是“禁止燃放煙花爆竹“的城市,濃度上升超過(guò)100的城市都未禁止燃放煙花爆竹.從以上8個(gè)城市中隨機(jī)選取3個(gè)城市組織專家進(jìn)行調(diào)研,記選到“禁止燃放煙花爆竹”的城市個(gè)數(shù)為X,求隨機(jī)變量y的分布列和數(shù)學(xué)期望;
(Ⅲ)記2017年除夕18時(shí)和初一2時(shí)以上8個(gè)城市空氣中PM2.5濃度的方差分別為s12和s22 , 比較s12和s22的大小關(guān)系(只需寫出結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=pe﹣x+x+1(p∈R). (Ⅰ)當(dāng)實(shí)數(shù)p=e時(shí),求曲線y=f(x)在點(diǎn)x=1處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)p=1時(shí),若直線y=mx+1與曲線y=f(x)沒(méi)有公共點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知MOD函數(shù)是一個(gè)求余函數(shù),記MOD(m,n)表示m除以n的余數(shù),例如MOD(8,3)=2.如圖是某個(gè)算法的程序框圖,若輸入m的值為48時(shí),則輸出i的值為( )
A.7
B.8
C.9
D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在直角梯形中,,,且.現(xiàn)以為一邊向形外作正方形,然后沿邊將正方形翻折,使平面與平面垂直,為的中點(diǎn),如圖2.
(1)求證:平面;
(2)求證:平面;
(3)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】數(shù)學(xué)名著《算學(xué)啟蒙》中有如下問(wèn)題:“松長(zhǎng)五尺,竹長(zhǎng)兩尺,松日自半,竹日自倍,松竹何日而長(zhǎng)等.”如圖是源于其思想的一個(gè)程序框圖,若輸入的a,b的值分別為16,4,則輸出的n的值為( )
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)f(x)=(x-1)3-ax-b,x∈R,其中a,b∈R。
(1)求f(x)的單調(diào)區(qū)間;
(2)若f(x)存在極點(diǎn)x0 , 且f(x1)=f(x0),其中x1≠x0 , 求證:x1+2x0=3;
(3)設(shè)a>0,函數(shù)g(x)=∣f(x)∣,求證:g(x)在區(qū)間[0,2]上的最大值不小于
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com