已知函數(shù)f(x)=lg(2sinxcosx),
(1)求它的定義域;
(2)判斷該函數(shù)是否具有奇偶性,并說明理由.
考點(diǎn):函數(shù)的定義域及其求法,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)f(x)=lg(2sinxcosx)=lg(sin2x),得出sin2x>0,從而kπ<x<kπ+
π
2
,k∈Z,(2)根據(jù)函數(shù)的奇偶性的定義,進(jìn)行判斷.
解答: 解:(1)f(x)=lg(2sinxcosx)=lg(sin2x),
∵sin2x>0,
∴2kπ<2x<2kπ+π,k∈Z,
即kπ<x<kπ+
π
2
,k∈Z,
∴f(x)的定義域?yàn)椋簕x|kπ<x<kπ+
π
2
,k∈Z}
(2)∵f(x)的定義域不關(guān)于原點(diǎn)對稱,
∴f(x)既不是奇函數(shù)也不是偶函數(shù).
點(diǎn)評:本題考查了函數(shù)的定義域問題,三角函數(shù)問題,函數(shù)的奇偶性問題,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是定義在R上的函數(shù),若f'(x)<2x-1且f(1)=0,則f(x)>x2-x的解集為( 。
A、(0,+∞)
B、(-∞,0)
C、(1,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

1
a
1
b
<0,則下列結(jié)論不正確的是( 。
A、a2<b2
B、ab<b2
C、|a|+|b|>|a+b|
D、
a
b
+
b
a
>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求(x2-
1
x
)6
的常數(shù)項(xiàng).  
(2)求(x-
2
x
)6
的整式項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p:函數(shù)y=ax+1(a>0且a≠1)在R上單調(diào)遞增;q:曲線y=x2-(2a-3)x+1與x軸無交點(diǎn).
(1)若¬q為真命題,求a的取值范圍;
(2)若p∧q為假命題,p∨q為真命題,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sin(ωx+φ)(ω>0,ω∈Z,0≤φ≤π)是R上的偶函數(shù),其圖象關(guān)于點(diǎn)M(
4
,0)對稱,且在[0,
π
2
]上是單調(diào)函數(shù).
(1)求ω和φ的值;
(2)求這個(gè)函數(shù)的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,若a:b:c=1:3:5,求
2sinA-sinB
sinC
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面是正方形,PD⊥底面ABCD,點(diǎn)E在棱PB上.
(1)求證平面AEC⊥平面PDB;
(2)當(dāng)PD=
3
AB,且E為PB中點(diǎn)時(shí),求AE與平面PDB所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a+b>0,用分析法證明:
a2+b2
2
2
(a+b).

查看答案和解析>>

同步練習(xí)冊答案