【題目】如圖,是雙曲線的兩個(gè)焦點(diǎn),一條直線與雙曲線的右支相切,且分別交兩條漸近線于A、B.又設(shè)O為坐標(biāo)原點(diǎn),求證: 1; 、、A、B四點(diǎn)在同一個(gè)圓上.

【答案】1)見解析(2)見解析

【解析】

⑴若直線AB的斜率不存在,即切點(diǎn)位于實(shí)軸的頂點(diǎn),則A、B的坐標(biāo)分別為(1,2)、(1,-2.這時(shí),結(jié)論成立.

若直線AB的斜率存在,可設(shè)直線AB的方程為.

由于AB與雙曲線相切,所以關(guān)于x的方程有兩個(gè)相等的實(shí)根,

.

整理得.

由于A、B的橫坐標(biāo)是方程的兩個(gè)實(shí)根,

我們有.

注意AB的坐標(biāo)分別為(),(.

可知,

因此.

⑵在中,,且,

所以 .同理.

這樣,我們有

.

即四邊形中的一組對(duì)角之和等于另一組對(duì)角之和,從而對(duì)角之和為180°,該四邊形內(nèi)接于圓.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】己知三邊,的長(zhǎng)都是整數(shù),,如果,則符合條件的三角形的個(gè)數(shù)是(  

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)若的極大值點(diǎn),求的取值范圍;

(2)當(dāng)時(shí),方程(其中)有唯一實(shí)數(shù)解,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來大氣污染防治工作得到各級(jí)部門的重視,某企業(yè)在現(xiàn)有設(shè)備下每日生產(chǎn)總成本(單位:萬元)與日產(chǎn)量(單位:噸)之間的函數(shù)關(guān)系式為,現(xiàn)為了配合環(huán)境衛(wèi)生綜合整治,該企業(yè)引進(jìn)了除塵設(shè)備,每噸產(chǎn)品除塵費(fèi)用為萬元,除塵后當(dāng)日產(chǎn)量時(shí),總成本

1)求的值;

2)若每噸產(chǎn)品出廠價(jià)為48萬元,試求除塵后日產(chǎn)量為多少時(shí),每噸產(chǎn)品的利潤(rùn)最大,最大利潤(rùn)為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在三棱錐中,底面,,的中點(diǎn).

(1)求證:;

(2)若二面角的大小為,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓和圓.

1)若圓與圓相外切,求的值;

2)若圓軸相切,求圓與圓的公共弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P-ABCD底面為正方形,PD⊥平面ABCD,PD=AD,點(diǎn)M為線段PA上任意一點(diǎn)(不含端點(diǎn)),點(diǎn)N在線段BD上,且PM=DN.

1)求證:直線MN∥平面PCD.

2)若點(diǎn)M為線段PA的中點(diǎn),求直線PB與平面AMN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx)=lnx+﹣1,a∈R.

(1)當(dāng)a>0時(shí),若函數(shù)fx)在區(qū)間[1,3]上的最小值為,求a的值;

(2)討論函數(shù)gx)=f′(x)﹣零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在邊長(zhǎng)為4的菱形中,,于點(diǎn),將沿折起到的位置,使,如圖2.

(1)求證:平面;

(2)求二面角的余弦值;

(3)判斷在線段上是否存在一點(diǎn),使平面平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案