【題目】直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點,則“k=1”是“△OAB的面積為 ”的(
A.充分而不必要條件
B.必要而不充分條件
C.充分必要條件
D.既不充分又不必要條件

【答案】A
【解析】解:若直線l:y=kx+1與圓O:x2+y2=1相交于A,B 兩點,
則圓心到直線距離d= ,|AB|=2
若k=1,則|AB|= ,d= ,則△OAB的面積為 × = 成立,即充分性成立.
若△OAB的面積為 ,則S= = ×2× = =
即k2+1=2|k|,即k2﹣2|k|+1=0,
則(|k|﹣1)2=0,
即|k|=1,
解得k=±1,則k=1不成立,即必要性不成立.
故“k=1”是“△OAB的面積為 ”的充分不必要條件.
故選:A.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中,正確的命題的序號為__________

①已知隨機變量服從二項分布,若,,則;

②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差恒不變;

③設隨機變量服從正態(tài)分布,若,則;

④某人在次射擊中,擊中目標的次數(shù)為,,則當時概率最大.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2002年北京國際數(shù)學家大會會標,是以中國古代數(shù)學家趙爽的弦圖為基礎而設計的,弦圖用四個全等的直角三角形與一個小正方形拼成的一個大正方形如圖,若大、小正方形的面積分別為25和1,直角三角形中較大銳角為,則等于  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是 ( )

A. 某事件發(fā)生的概率為1.1 B. 對立事件也是互斥事件

C. 不能同時發(fā)生的的兩個事件是兩個對立事件 D. 某事件發(fā)生的概率是隨著實驗次數(shù)的變化而變化的

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列的前項和為,且滿足:

(1)求的通項公式;

(2)設,求的前項和

(3)在(2)的條件下,對任意,都成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中正確的是( )

① 如果一條直線不在某個平面內(nèi),那么這條直線就與這個平面平行;

② 過直線外一點有無數(shù)個平面與這條直線平行;

③ 過平面外一點有無數(shù)條直線與這個平面平行;

④ 過空間一點必存在某個平面與兩條異面直線都平行.

A. ①④B. ②③C. ①②③D. ①②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cosx(sinx+cosx)﹣
(1)若0<α< ,且sinα= ,求f(α)的值;
(2)求函數(shù)f(x)的最小正周期及單調遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓.

(1)若過點的直線被圓截得的弦長為,求直線的方程;

(2)已知點 為圓上的點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】知函數(shù).

(1)當時,求曲線在點處的切線方程;

(2)討論的單調性;

(3)若,求的取值范圍.

查看答案和解析>>

同步練習冊答案