【題目】已知某校5個學(xué)生的數(shù)學(xué)和物理成績?nèi)缦拢?/span>

學(xué)生的編號

1

2

3

4

5

數(shù)學(xué)成績

80

75

70

65

60

物理成績

70

66

68

64

62

1)通過大量事實(shí)證明發(fā)現(xiàn),一個學(xué)生的數(shù)學(xué)成績和物理成績是具有很強(qiáng)的線性相關(guān)關(guān)系的,在上述表格中,用表示數(shù)學(xué)成績,用表示物理成績,求關(guān)于的回歸方程.

2)利用殘差分析回歸方程的擬合效果,若殘差和在范圍內(nèi),則稱回歸方程為優(yōu)擬方程,問:該回歸方程是否為優(yōu)擬方程

3)現(xiàn)從5名同學(xué)中任選兩人參加訪談活動,求1號同學(xué)沒被選中的概率.

附:對于一組數(shù)據(jù),,,其回歸直線的斜率和截距的最小二乘估計分別為:,.

【答案】12)該回歸方程是優(yōu)擬方程.(3

【解析】

1)分別算出,利用最小二乘法算出的值,寫出線性回歸方程,得到結(jié)果;

2)確定所給的殘差平方和的范圍,得到所求的線性回歸方程是一個“優(yōu)擬方程”.

3)根據(jù)古典概型的概率公式計算可得;

解:(1)由已知數(shù)據(jù)得,,,

,

,所以

故回歸直線方程為.

2)由,可知,

同理可得,,,

所以,

故該回歸方程是優(yōu)擬方程

3)現(xiàn)從5名同學(xué)中任選兩人參加訪談活動,共有種方法;

其中1號同學(xué)沒被選中有種方法,

故概率

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與拋物線C及其準(zhǔn)線分別交于M,N兩點(diǎn),F為拋物線的焦點(diǎn),若,則m等于( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一士兵要在一個半徑為的圓形區(qū)域內(nèi)檢查是否埋有地雷,他所用的檢查儀器的有效作用范圍的半徑為求該士兵從該圓邊界上一點(diǎn)出發(fā),至少需走多少米才能將區(qū)域檢測完,且回到出發(fā)點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若無窮數(shù)列滿足:,且對任意正整數(shù),都為中等于的項(xiàng)的個數(shù),則稱數(shù)列為“數(shù)列”.

(1)請列舉出三個數(shù)列,每個數(shù)列只寫出其前5項(xiàng);

(2)若數(shù)列為一個數(shù)列,證明:,都有

(3)若數(shù)列為一個數(shù)列,求集合中元素個數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某醫(yī)療研究所為了檢驗(yàn)?zāi)撤N血清預(yù)防感冒的作用,把名使用血清的人與另外名未用血清的人一年中的感冒記錄作比較,提出假設(shè)這種血清不能起到預(yù)防感冒的作用,利用列聯(lián)表計算得,經(jīng)查對臨界值表知.對此,四名同學(xué)做出了以下的判斷:

:有的把握認(rèn)為這種血清能起到預(yù)防感冒的作用

:若某人未使用該血清,那么他在一年中有的可能性得感冒

:這種血清預(yù)防感冒的有效率為

:這種血清預(yù)防感冒的有效率為

則下列結(jié)論中,正確結(jié)論的序號是

;;;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;

(Ⅱ)若恒成立,求的取值范圍;

(Ⅲ)證明:若存在零點(diǎn),則在區(qū)間上僅有一個零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校學(xué)生社團(tuán)組織活動豐富,學(xué)生會為了解同學(xué)對社團(tuán)活動的滿意程度,隨機(jī)選取了100位同學(xué)進(jìn)行問卷調(diào)查,并將問卷中的這100人根據(jù)其滿意度評分值(百分制)按照[40,50),[5060),[6070),[90,100]分成6組,制成如圖所示頻率分布直方圖.

1)求圖中x的值;

2)求這組數(shù)據(jù)的中位數(shù);

3)現(xiàn)從被調(diào)查的問卷滿意度評分值在[60,80)的學(xué)生中按分層抽樣的方法抽取5人進(jìn)行座談了解,再從這5人中隨機(jī)抽取2人作主題發(fā)言,求抽取的2人恰在同一組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)的直角坐標(biāo)為,若直線的極坐標(biāo)方程為曲線的參數(shù)方程是為參數(shù)).

(1)求直線和曲線的普通方程;

(2)設(shè)直線和曲線交于兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了政府對過熱的房地產(chǎn)市場進(jìn)行調(diào)控決策,統(tǒng)計部門對城市人和農(nóng)村人進(jìn)行了買房的心理預(yù)期調(diào)研,用簡單隨機(jī)抽樣的方法抽取110人進(jìn)行統(tǒng)計,得到如下列聯(lián)表:

買房

不買房

糾結(jié)

城市人

5

15

農(nóng)村人

20

10

已知樣本中城市人數(shù)與農(nóng)村人數(shù)之比是3:8.

分別求樣本中城市人中的不買房人數(shù)和農(nóng)村人中的糾結(jié)人數(shù);

用獨(dú)立性檢驗(yàn)的思想方法說明在這三種買房的心理預(yù)期中哪一種與城鄉(xiāng)有關(guān)?

參考公式:

k

查看答案和解析>>

同步練習(xí)冊答案