【題目】某班有學生50人,其中男同學30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動。
(1)求從該班男、女同學中各抽取的人數(shù);
(2)從抽取的5名同學中任選2名談此活動的感受,求選出的2名同學中恰有1名男同學的概率
【答案】(1)男生3人,女生2人(2)0.6
【解析】
試題分析:(Ⅰ)按照分層抽樣的方法:各層被抽到的比例相同解答;(Ⅱ)利用列舉法分別明確從選出的5人中隨機選出2名同學進行訪談和選出的兩名同學中恰有一名男同學的所以可能,利用古典概率公式解答
試題解析::(1)抽取的5人中男同學的人數(shù)為5×=3人,女同學的人數(shù)為5-3=2人.
(2)記3名男同學為A1,A2,A3,2名女同學為B1,B2.
從5人中隨機選出2名同學,所有可能的結(jié)果有A1 A2,A1 A3,A1 B1,A1 B2,A2 A3,A2 B1,A2 B2,A3 B1,A3 B2,B1 B2,共10個.
用C表示:“選出的兩名同學中恰有一名男同學”這一事件,則C中的結(jié)果有6個,它們是A1B1,A1B2,A2 B1,A2 B2,A3 B1,A3 B2,
所以 選出的兩名同學中恰有一名男同學的概率P(C)=610=35
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線:()與橢圓:相交所得的弦長為
(Ⅰ)求拋物線的標準方程;
(Ⅱ)設(shè),是上異于原點的兩個不同點,直線和的傾斜角分別為和,當,變化且為定值()時,證明:直線恒過定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,過橢圓上一點向軸作垂線,垂足為左焦點,分別為的右頂點,上頂點,且,.
(1)求橢圓的方程;
(2)為上的兩點,若四邊形逆時針排列)的對角線所在直線的斜率為,求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.
(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;
(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知四棱錐P-ABCD,底面ABCD是邊長為2的蓌形,PA⊥平面ABCD,PA=2,∠ABC=60°,E,F分別是BC,PC的中點。
(1)求證:AE⊥PD;
(2)求二面角E-AF-C的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將一顆質(zhì)地均勻的正方體骰子(六個面的點數(shù)分別為1,2,3,4,5,6)先后拋擲兩次,記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為.
(1)求事件“”的概率;
(2)求事件“”的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓,直線:x=6,圓與軸相交于點(如圖),點P(-1,2)是圓內(nèi)一點,點為圓上任一點(異于點),直線與相交于點.
(1)若過點P的直線與圓相交所得弦長等于,求直線的方程;
(2)設(shè)直線的斜率分別為,求證: 為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠家計劃在2012年舉行商品促銷活動,經(jīng)調(diào)查測算,該商品的年銷售量萬件與年促銷費用萬元滿足:,其中為常數(shù),若不搞促銷活動,則該產(chǎn)品的年銷售量只有1萬件,已知2012年生產(chǎn)該產(chǎn)品的固定投入為8萬元,每生產(chǎn)1萬件該產(chǎn)品需要再投入16萬元,廠家的產(chǎn)量等于銷售量,而銷售收入為生產(chǎn)成本的1.5倍(生產(chǎn)成本由固定投入和再投入兩部分資金組成).
(1)將2012年該產(chǎn)品的利潤萬元表示為年促銷費用萬元的函數(shù);
(2)該廠2012年的促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,,其前項和滿足,其中.
(1)設(shè),證明:數(shù)列是等差數(shù)列;
(2)設(shè),為數(shù)列的前項和,求證:;
(3)設(shè)(為非零整數(shù),),試確定的值,使得對任意,都有成立.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com