【題目】已知函數(shù).
(1)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;
(2)若恒成立,求實(shí)數(shù)的取值范圍;
(3)證明:
【答案】(1)(2)(3)證明見(jiàn)解析
【解析】
試題(1)利用導(dǎo)數(shù)的幾何意義求曲線在點(diǎn)處的切線方程,注意這個(gè)點(diǎn)的切點(diǎn);
(2)對(duì)于恒成立的問(wèn)題,常用到以下兩個(gè)結(jié)論:恒成立,恒成立;
(3)證明不等式,注意應(yīng)用前幾問(wèn)的結(jié)論.
試題解析:(1)函數(shù)的定義域?yàn)?/span>,
所以,又切線與直線垂直,
所以切線斜率為,從而,解得 ,
(2)若,則則在上是增函數(shù)
而不成立,故
若,則當(dāng)時(shí),;
當(dāng)時(shí),
所以在上是增函數(shù),在上是減函數(shù),
所以的最大值為
要使恒成立,只需,解得
(3)由(2)知,當(dāng)時(shí),有在上恒成立,
且在上是增函數(shù),
所以在上恒成立 .
令,則
令則有
以上各式兩邊分別相加,
得
即
故
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)定義域?yàn)?/span>,設(shè).
(1)試確定的取值范圍,使得函數(shù)在上為單調(diào)函數(shù);
(2)求證:;
(3)求證:對(duì)于任意的,總存在,滿足,并確定這樣的的個(gè)數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在全面抗擊新冠肺炎疫情這一特殊時(shí)期,我市教育局提出“停課不停學(xué)”的口號(hào),鼓勵(lì)學(xué)生線上學(xué)習(xí).某校數(shù)學(xué)教師為了調(diào)查高三學(xué)生數(shù)學(xué)成績(jī)與線上學(xué)習(xí)時(shí)間之間的相關(guān)關(guān)系,對(duì)高三年級(jí)隨機(jī)選取45名學(xué)生進(jìn)行跟蹤問(wèn)卷,其中每周線上學(xué)習(xí)數(shù)學(xué)時(shí)間不少于5小時(shí)的有19人,余下的人中,在檢測(cè)考試中數(shù)學(xué)平均成績(jī)不足120分的占,統(tǒng)計(jì)成績(jī)后得到如下列聯(lián)表:
分?jǐn)?shù)不少于120分 | 分?jǐn)?shù)不足120分 | 合計(jì) | |
線上學(xué)習(xí)時(shí)間不少于5小時(shí) | 4 | 19 | |
線上學(xué)習(xí)時(shí)間不足5小時(shí) | |||
合計(jì) | 45 |
(1)請(qǐng)完成上面列聯(lián)表;并判斷是否有99%的把握認(rèn)為“高三學(xué)生的數(shù)學(xué)成績(jī)與學(xué)生線上學(xué)習(xí)時(shí)間有關(guān)”;
(2)在上述樣本中從分?jǐn)?shù)不少于120分的學(xué)生中,按照分層抽樣的方法,抽到線上學(xué)習(xí)時(shí)間不少于5小時(shí)和線上學(xué)習(xí)時(shí)間不足5小時(shí)的學(xué)生共5名,若在這5名學(xué)生中隨機(jī)抽取2人,求至少1人每周線上學(xué)習(xí)時(shí)間不足5小時(shí)的概率.
(下面的臨界值表供參考)
0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式 其中)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果函數(shù)的導(dǎo)函數(shù)的圖象如圖所示,則以下關(guān)于函數(shù)的判斷:
①在區(qū)間內(nèi)單調(diào)遞增;
②在區(qū)間內(nèi)單調(diào)遞減;
③在區(qū)間內(nèi)單調(diào)遞增;
④是極小值點(diǎn);
⑤是極大值點(diǎn).
其中正確的是( )
A. ③⑤B. ②③C. ①④⑤D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】3月3日,武漢大學(xué)人民醫(yī)院的團(tuán)隊(duì)在預(yù)印本平臺(tái)上發(fā)布了一項(xiàng)研究:在新冠肺炎病例的統(tǒng)計(jì)數(shù)據(jù)中,男性患者往往比女性患者多.研究者分析了1月1日~29日的6013份病例數(shù)據(jù),發(fā)現(xiàn)的患者為男性;進(jìn)入重癥監(jiān)護(hù)病房的患者中,則有為男性.隨后,他們分析了武漢大學(xué)人民醫(yī)院的數(shù)據(jù).他們按照癥狀程度的不同進(jìn)行分析,結(jié)果發(fā)現(xiàn),男性患者有為危重,而女性患者危重情況的為.也就是說(shuō)男性的發(fā)病情況似乎普遍更嚴(yán)重.研究者總結(jié)道:“男性在新冠肺炎的傳播中扮演著重要的角色.”那么,病毒真的偏愛(ài)男性嗎?有一個(gè)中學(xué)生學(xué)習(xí)小組,在自己封閉的社區(qū)進(jìn)行無(wú)接觸抽樣問(wèn)卷調(diào)查,收集到男、女患者各50個(gè)數(shù)據(jù),統(tǒng)計(jì)如下:
輕—中度感染 | 重度(包括危重) | 總計(jì) | |
男性患者 | |||
女性患者 | |||
總計(jì) |
(1)求列聯(lián)表中的數(shù)據(jù)的值;
(2)能否有把握認(rèn)為,新冠肺炎的感染程度和性別有關(guān)?
(3)該學(xué)生實(shí)驗(yàn)小組打算從“輕—中度感染”的患者中按男女比例再抽取5人,追蹤某種中藥制劑的效果.然后從這5人中隨機(jī)抽取3人進(jìn)行每日的健康記錄,求至少抽到2名女性患者的概率.
附表及公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若關(guān)于的方程恰有兩個(gè)不相等的實(shí)數(shù)根, 則實(shí)數(shù)的取值范圍是
A. B. , C. , D. ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中a∈R.
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)當(dāng) 時(shí),設(shè)、為曲線上任意兩點(diǎn),曲線在點(diǎn)處的切線斜率為k,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的方程為,曲線:(為參數(shù),),在以原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線:.
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若直線與曲線有公共點(diǎn),且直線與曲線的交點(diǎn)恰好在曲線與軸圍成的區(qū)域(不含邊界)內(nèi),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com