【題目】“日行一萬步,健康你一生”的養(yǎng)生觀念已經(jīng)深入人心,由于研究性學習的需要,某大學生收集了手機“微信運動”團隊中特定甲、乙兩個班級名成員一天行走的步數(shù),然后采用分層抽樣的方法按照, , , 分層抽取了20名成員的步數(shù),并繪制了如下尚不完整的莖葉圖(單位:千步):

已知甲、乙兩班行走步數(shù)的平均值都是44千步.

(1)求的值;

(2)(ⅰ)若,求甲、乙兩個班級100名成員中行走步數(shù)在, , , 各層的人數(shù);

(ⅱ)若估計該團隊中一天行走步數(shù)少于40千步的人數(shù)比處于千步的人數(shù)少12人,求的值.

【答案】(1)見解析;(2) (。┮娊馕; (ⅱ).

【解析】試題分析:(1)根據(jù)平均數(shù)的計算公式,列出方程,即可求解的值;

(2)(。┯深}意得抽樣比為,即可分層抽樣得到甲乙兩個班名成員在各層抽取的人數(shù);

(ⅱ)根據(jù)題意求得該團隊中一天行走步數(shù)少于千步的人數(shù)與處于千步的人數(shù)的頻率之差,即可該團隊中一天行走步數(shù)少于千步的人數(shù)比處于千步的人數(shù)少人數(shù),即可求得 的值.

試題解析:

(1)因為甲班的平均值為44,

所以,

解得.

同理,因為乙班平均值為44,

所以,

解得.

(2)(ⅰ)因為抽樣比為,且抽取的20名成員中行走步數(shù)在 , 各層的人數(shù)依次為2,3,8,7,

所以甲、乙兩個班級100名成員中行走步數(shù)在, , , 各層的人數(shù)依次為10,15,40,35.

(ⅱ)該團隊中一天行走步數(shù)少于40千步的頻率為,

處于千步的頻率為,

則估計該團隊中一天行走步數(shù)少于40千步的人數(shù)與處于千步的人數(shù)的頻率之差為.

又因為該團隊中一天行走步數(shù)少于40千步的人數(shù)比處于千步的人數(shù)少12人,

所以,解得.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】[2018·滄州質(zhì)檢]對于橢圓,有如下性質(zhì):若點是橢圓上的點,則橢圓在該點處的切線方程為.利用此結(jié)論解答下列問題.點是橢圓上的點,并且橢圓在點處的切線斜率為

(1)求橢圓的標準方程;

(2)若動點在直線上,經(jīng)過點的直線,與橢圓相切,切點分別為,.求證:直線必經(jīng)過一定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】函數(shù)的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.

(Ⅰ)求函數(shù)的解析式和當的單調(diào)減區(qū)間;

(Ⅱ)的圖象向右平行移動個長度單位,再向下平移1個長度單位,得到的圖象,用“五點法”作出內(nèi)的大致圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,短軸長和焦距都等于2, 是橢圓上的一點,且在第一象限內(nèi),過且斜率等于的直線與橢圓交于另一點,點關于原點的對稱點為.

)證明:直線的斜率為定值;

)求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列命題:

(1)終邊在y軸上的角的集合是;

(2)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移個單位后,得到的函數(shù)解析式可以表示成f(x)=2sin;

(3)函數(shù)f(x)=sinx的值域是[-1,1];

(4)已知函數(shù)f(x)=2cosx,若存在實數(shù)x1,x2,使得對任意的實數(shù)x都有成立,則的最小值為2π.

其中正確的命題的序號為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)試討論函數(shù)的極值點情況;

(2)當為何值時,不等式)恒成立?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,且短軸長為2.

1)求橢圓的標準方程;

2)已知分別為橢圓的左右頂點, ,,且,直線分別與橢圓交于兩點,

(i)用表示點的縱坐標;

(ii)若面積是面積的5倍,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)當時,求函數(shù)的極值;

(2)設函數(shù)處的切線方程為,若函數(shù)上的單調(diào)增函數(shù),求的值;

(3)是否存在一條直線與函數(shù)的圖象相切于兩個不同的點?并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為,且直線經(jīng)過曲線的左焦點

(1)求的值及直線的普通方程;

(2)設曲線的內(nèi)接矩形的周長為,求的最大值.

查看答案和解析>>

同步練習冊答案