【題目】給定整數(shù)(),設(shè)集合,記集合.
(1)若,求集合;
(2)若構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,求證:集合中的元素個(gè)數(shù)為;
(3)若構(gòu)成以為首項(xiàng),為公比的等比數(shù)列,求集合中元素的個(gè)數(shù)及所有元素之和.
【答案】(1)(2)見解析(3)
【解析】
(1)由新定義和集合的列舉法,可得所求集合;
(2)運(yùn)用等差數(shù)列為遞增數(shù)列,以及性質(zhì),即可得到所求個(gè)數(shù);
(3)由等比數(shù)列的通項(xiàng)公式和性質(zhì),結(jié)合新定義計(jì)算可得所求結(jié)論.
(1)因?yàn)?/span>,
當(dāng)時(shí),
∴.
(2) 因?yàn)?/span>構(gòu)成以為首項(xiàng),()為公差的等差數(shù)列,所以有(),以及().
此時(shí),集合中的元素有以下大小關(guān)系:
.
因此,集合中含有個(gè)元素.
(3)由題設(shè),.
設(shè)集合,.
①先證中的元素個(gè)數(shù)為,即從集合中任取兩個(gè)元素,它們的和互不相同.
不妨設(shè),于是.
顯然.
假設(shè),可得,即.
因?yàn)?/span>,,所以,又,于是,等式不成立.
因此,.
同理可證.
②再證.
不妨設(shè),于是.
顯然,.
假設(shè),可得,即,
因?yàn)?/span>,所以,又,于是,等式不成立.
因此,.
由①②,得,且.
此時(shí),集合中的元素個(gè)數(shù)為.
集合中所有元素的和為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】目前,新冠病毒引發(fā)的肺炎疫情在全球肆虐,為了解新冠肺炎傳播途徑,采取有效防控措施,某醫(yī)院組織專家統(tǒng)計(jì)了該地區(qū)500名患者新冠病毒潛伏期的相關(guān)信息,數(shù)據(jù)經(jīng)過匯總整理得到如圖所示的頻率分布直方圖(用頻率作為概率).潛伏期低于平均數(shù)的患者,稱為“短潛伏者”,潛伏期不低于平均數(shù)的患者,稱為“長潛伏者”.
(1)求這500名患者潛伏期的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表),并計(jì)算出這500名患者中“長潛伏者”的人數(shù);
(2)為研究潛伏期與患者年齡的關(guān)系,以潛伏期是否高于平均數(shù)為標(biāo)準(zhǔn)進(jìn)行分層抽樣,從上述500名患者中抽取300人,得到如下列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并根據(jù)列聯(lián)表判斷是否有97.5%的把握認(rèn)為潛伏期長短與患者年齡有關(guān);
短潛伏者 | 長潛伏者 | 合計(jì) | |
60歲及以上 | 90 | ||
60歲以下 | 140 | ||
合計(jì) | 300 |
附表及公式:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市環(huán)保部門為了讓全市居民認(rèn)識到冬天燒煤取暖對空氣數(shù)值的影響,進(jìn)而喚醒全市人民的環(huán)保節(jié)能意識.對該市取暖季燒煤天數(shù)與空氣數(shù)值不合格的天數(shù)進(jìn)行統(tǒng)計(jì)分析,得出表數(shù)據(jù):
(天) | |||||
(天) |
(1)以統(tǒng)計(jì)數(shù)據(jù)為依據(jù),求出關(guān)于的線性回歸方程;
(2)根據(jù)(1)求出的線性回歸方程,預(yù)測該市燒煤取暖的天數(shù)為時(shí)空氣數(shù)值不合格的天數(shù).
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),有以下命題:
①是奇函數(shù);
②單調(diào)遞增函數(shù);
③方程僅有1個(gè)實(shí)數(shù)根;
④如果對任意有,則的最大值為2.
則上述命題正確的有_____________.(寫出所有正確命題的編號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
如圖,四棱錐的底面為菱形,平面,,
分別為的中點(diǎn),.
(Ⅰ)求證:平面平面.
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖為我國數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周髀算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供5種顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色、相鄰區(qū)域顏色不同,則區(qū)域不同涂色的方法種數(shù)為( )
A.360B.400C.420D.480
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】袋中裝著10個(gè)外形完全相同的小球,其中標(biāo)有數(shù)字1的小球有1個(gè),標(biāo)有數(shù)字2的小球有2個(gè),標(biāo)有數(shù)字3的小球有3個(gè),標(biāo)有數(shù)字4的小球有4個(gè).
現(xiàn)從袋中任取3個(gè)小球,按3個(gè)小球上最大數(shù)字的8倍計(jì)分,每個(gè)小球被取出的可能性都相等,用表示取出的三個(gè)小球上的最大數(shù)字,求:
(1)取出的3個(gè)小球上的數(shù)字互不相同的概率;
(2)隨機(jī)變量的分布列;
(3)計(jì)算介于20分到40分之間的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),過點(diǎn)A(-4,4)且焦點(diǎn)在x軸.
(1)求拋物線方程;
(2)直線l過定點(diǎn)B(-1,0)與該拋物線相交所得弦長為8,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某高校在2019的自主招生考試中,考生筆試成績分布在,隨機(jī)抽取200名考生成績作為樣本研究,按照筆試成績分成5組,第1組成績?yōu)?/span>,第2組成績?yōu)?/span>,第3組成績?yōu)?/span>,第4組成績?yōu)?/span>,第5組成績?yōu)?/span>,樣本頻率分布直方圖如下:
(1)估計(jì)全體考生成績的中位數(shù);
(2)為了能選撥出最優(yōu)秀的學(xué)生,該校決定在筆試成績高的第3,4,5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,從這6名學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行外語交流面試,求這2名學(xué)生均來自同一組的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com