π
2
0
2
sin(x+
π
4
)dx=
 
考點:定積分
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:根據(jù)積分公式直接計算即可.
解答: 解:
π
2
0
2
sin(x+
π
4
)dx
=
π
2
0
[
2
×
2
2
(sinx+cosx)]dx
=
π
2
0
(sinx+cosx)dx
=(sinx-cosx)|
 
π
2
0

=1+1=2,
故答案為:2.
點評:本題主要考查積分的計算,要求熟練掌握常見函數(shù)的積分公式,比較基礎(chǔ).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有大小形狀完全相同的n+3個乒乓球,其中1個乒乓球上標(biāo)有數(shù)字1,2個乒乓球上標(biāo)有數(shù)字2,其余n個乒乓球上均標(biāo)有數(shù)字3(n∈N*),若從這個口袋中隨機地摸出2個乒乓球,恰有一個乒乓球上標(biāo)有數(shù)字2的概率是
8
15

(1)求n的值;
(2)從口袋中隨機地摸出2個乒乓球,設(shè)ξ表示所摸到的2個乒乓球上所標(biāo)數(shù)字之積,求ξ的分布列和數(shù)學(xué)期望Eξ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

曲線y=2x4上的點到直線x+y+1=0的距離的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單位向量
i
,
j
滿足(2
j
-
i
i
,則
i
,
j
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y滿足約束條件
1≤x≤2
2x-1≤y≤2x
,則
y
x
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知正四面體ABCD的棱長為1,M為AC的中點,P在線段DM上,則(AP+BP)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列7個判斷:
①若f(x)=x2-2ax在[1,+∞)上增函數(shù),則a=1;②函數(shù)f(x)=2x-x2只有兩個零點;
③函數(shù)y=ln(x2+1)的值域是R;④函數(shù)y=2|x|的最小值是1;⑤在同一坐標(biāo)系中函數(shù)y=2x與y=2-x的圖象關(guān)于y軸對稱;⑥設(shè)a>1,log0.2a、0.2a、a0.2的大小關(guān)系為log0.2a<0.2aa0.2;⑦設(shè)偶函數(shù)f(x)的定義域為R,當(dāng)x∈[0,+∞)時,f(x)是增函數(shù),則f(-2),f(π),f(-3)的大小關(guān)為U=R;
其中正確的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①“若a<b<0,則a2>ab>b2
②命題“a、b都是偶數(shù),則a+b是偶數(shù)”的逆否命題是“a+b不是偶數(shù),則a、b都不是偶數(shù)”;
③若有命題p:7≥7,q:ln2>0,則p且q是真命題;
④命題:“若x2-x-2≠0,則x≠-1且x≠2”的否命題是若x2-x-2=0,則x=-1或x=2.其中真命題有
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

①若k>0,則方程x2+2x-k=0有實根;
②“若a>b,則ac>bc”的否命題;
③“矩形的對角線相等”的逆命題;
④“若xy=0,則x、y至少有一個為零”的逆否命題.
以上命題中的真命題有(  )
A、①③B、①④C、②③D、③④

查看答案和解析>>

同步練習(xí)冊答案