已知x,y≠kπ+
π
2
(k∈Z),sinx是sinθ,cosθ的等差中項(xiàng),siny是sinθ,cosθ的等比中項(xiàng).
求證:(1)cos2x=
1
2
cos2y;(2)
2(1-tan2x)
1+tan2x
=
1-tan2y
1+tan2y
證明:(1)∵sinθ與cosθ的等差中項(xiàng)是sinx,等比中項(xiàng)是siny,
∴sinθ+cosθ=2sinx①,sinθcosθ=sin2y②,
2-②×2,可得(sinθ+cosθ)2-2sinθcosθ=4sin2x-2sin2y,即4sin2x-2sin2y=1.
∴4×
1-cos2x
2
-2×
1-cos2y
2
=1,即2-2cos2x-(1-cos2y)=1.
故證得cos2x=
1
2
cos2y;
(2)要證
2(1-tan2x)
1+tan2x
=
1-tan2y
1+tan2y
,只需證
1-
sin2x
cos2x
1+
sin2x
cos2x
=
1-
sin2y
cos2y
2(1+
sin2y
cos2y
)
,
即證
cos2x-sin2x
cos2x+sin2x
=
cos2y-sin2y
2(cos2y+sin2y)
,即證cos2x-sin2x=
1
2
(cos2y-sin2y),只需證cos2x=
1
2
cos2y.
由(1)的結(jié)論,cos2x=
1
2
cos2y顯然成立.
所以
2(1-tan2x)
1+tan2x
=
1-tan2y
1+tan2y
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y≠kπ+
π
2
(k∈Z),sinx是sinθ,cosθ的等差中項(xiàng),siny是sinθ,cosθ的等比中項(xiàng).
求證:(1)cos2x=
1
2
cos2y;(2)
2(1-tan2x)
1+tan2x
=
1-tan2y
1+tan2y

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)一模)已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為
5
2
3

(1)求橢圓C的方程;
(2)已知?jiǎng)又本y=k(x+1)與橢圓C相交于A、B兩點(diǎn).
①若線段AB中點(diǎn)的橫坐標(biāo)為-
1
2
,求斜率k的值;
②已知點(diǎn)M(-
7
3
,0)
,求證:
MA
MB
為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知x,y≠kπ+數(shù)學(xué)公式(k∈Z),sinx是sinθ,cosθ的等差中項(xiàng),siny是sinθ,cosθ的等比中項(xiàng).
求證:(1)cos2x=數(shù)學(xué)公式cos2y;(2)數(shù)學(xué)公式=數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)必做100題(選修1-2)(解析版) 題型:解答題

已知x,y≠kπ+(k∈Z),sinx是sinθ,cosθ的等差中項(xiàng),siny是sinθ,cosθ的等比中項(xiàng).
求證:(1)cos2x=cos2y;(2)=

查看答案和解析>>

同步練習(xí)冊(cè)答案