精英家教網 > 高中數學 > 題目詳情
3
-1
20
sinx
cosx
=
2
3
,則實數x的取值集合為
 
考點:幾種特殊的矩陣變換
專題:計算題,矩陣和變換
分析:
3
-1
20
sinx
cosx
=
2
3
,可得
3
sinx-cosx=2,2sinx=
3
,即sinx=
3
2
,cosx=-
1
2
,從而可得實數x的取值集合.
解答: 解:∵
3
-1
20
sinx
cosx
=
2
3
,
3
sinx-cosx=2,2sinx=
3
,
∴sinx=
3
2
,cosx=-
1
2
,
∴x=
π
3
+2kπ,k∈Z,
故答案為:{x|x=
π
3
+2kπ,k∈Z}.
點評:本題考查矩陣的乘法,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓的焦點坐標是(-2
3
,0)和(2
3
,0)并且經過點P(
5
,
6
),求橢圓方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

將模為
2
的向量
OA1
繞點O逆時針旋轉
π
4
且模變?yōu)樵瓉淼?span id="sah0yrd" class="MathJye">
2
2
得到向量
OA2
,講向量
OA2
繞點O逆時針旋轉
π
4
且模變?yōu)樵瓉淼?span id="uxaxkhz" class="MathJye">
2
2
得到向量
OA3
,…,仿此無限進行下去,記△OA1A2的面積為a1,△OA2A3的面積為a2,…,△OAnAn+1的面積為an,…
(1)求所有這些三角形的面積和;
(2)對于數列{an},能否從中取出無限項組成一個新的等比數列{bn},使得數列{bn}的各項和為數列{an}的各項和的
4
15
?若存在,求出數列{bn}的通項公式;若不存在,寫出理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,
(1)畫出二面角A-B1C-C1的平面角;
(2)求證:面BB1DD1⊥面AB1C.

查看答案和解析>>

科目:高中數學 來源: 題型:

設二次函數f(x)=ax2+bx+c滿足條件;①y=f(x)的圖象過點
1
,
1
,②當x=-1時,y=f(x)取得最小值是0.
(1)求f(x)的解析式;
(2)若g(x)=f(x)-k2x在
-1
,
1
上是單調函數,求k的取值范圍;
(3)是否存在自然數m,使得關于x的不等式f(x-m)≤x在區(qū)間[1,
4
上有解?若存在,求出自然數m的取值集合,若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

△ABC一邊BC在平面α內,頂點A在平面α外,已知∠ABC=
π
3
,三角形所在平面與α所成的二面角為
π
6
,則直線AB與α所成角的正弦值為( 。
A、
3
2
B、
1
4
C、
1
2
D、
3
4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知正三棱錐P-ABC的體積為
6
2
,外接球球心為O,且滿足
OA
+
OB
+
OC
=
0
,則正三棱錐P-ABC的外接球半徑為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數sgn(x)=
1,x>0
0,x=0
-1,x<0
,求函數f(x)=sgn(lnx)-ln2x的零點.

查看答案和解析>>

科目:高中數學 來源: 題型:

4個人去借3本不同的書,全部借完,所有借法有
 
種.

查看答案和解析>>

同步練習冊答案