拋物線的準(zhǔn)線方程是y=2,則實(shí)數(shù)a的值為(    ).
A.8B.-8C.D.
B
由于準(zhǔn)線方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,拋物線的焦點(diǎn)均在軸上,的中心和的頂點(diǎn)均為坐標(biāo)原點(diǎn),從每條曲線上各取兩個(gè)點(diǎn),將其坐標(biāo)記錄于表中:










 
(1)求的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線同時(shí)滿足條件:(ⅰ)過的焦點(diǎn);(ⅱ)與交于不同兩點(diǎn)、,且滿足.若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.設(shè)直線與拋物線交于不同兩點(diǎn),點(diǎn)為拋物線準(zhǔn)線上的一點(diǎn)。
(I)若,且三角形的面積為4,求拋物線的方程;
(II)當(dāng)為正三角形時(shí),求出點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分12分)設(shè)是拋物線p>0)的內(nèi)接正三角形(為坐標(biāo)原點(diǎn)),其面積為;點(diǎn)M是直線上的動(dòng)點(diǎn),過點(diǎn)M作拋物線的切線MP、MQ,PQ為切點(diǎn).
(1)求拋物線的方程;
(2)直線PQ是否過定點(diǎn),若過定點(diǎn)求出定點(diǎn)坐標(biāo);若不過定點(diǎn),說明理由;
(3)求MPQ面積的最小值及相應(yīng)的直線PQ的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分18分)本題共有3個(gè)小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分其中①6分、②2分。
設(shè)拋物線的焦點(diǎn)為,過且垂直于軸的直線與拋物線交于兩點(diǎn),已知.
(1)求拋物線的方程;
(2)設(shè),過點(diǎn)作方向向量為的直線與拋物線相交于兩點(diǎn),求使為鈍角時(shí)實(shí)數(shù)的取值范圍;
(3)①對給定的定點(diǎn),過作直線與拋物線相交于兩點(diǎn),問是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?若存在,請求出這條直線;若不存在,請說明理由。
②對,過作直線與拋物線相交于兩點(diǎn),問是否存在一條垂直于軸的直線與以線段為直徑的圓始終相切?(只要求寫出結(jié)論,不需用證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖是拋物線形拱橋,當(dāng)水面在圖中位置時(shí),拱頂離水面2米,水面寬4米.水下降1米后,水面寬為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)到其準(zhǔn)線的距離為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點(diǎn)坐標(biāo)是          

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線的焦點(diǎn)作一直線交拋物線于A(x1, y1)、B(x2, y2)兩點(diǎn),并且已知=6,那么=(      )
A.6B.8C.9D.10

查看答案和解析>>

同步練習(xí)冊答案