3.已知函數(shù)f(x)=$|\begin{array}{l}{{e}^{x}-1}&{-2}\\{1}&{{e}^{x}+2}\end{array}|$,其中$|\begin{array}{l}{x-3}&{-1}\\{2}&{4-x}\end{array}|$≥0,則函數(shù)f(x)的值域?yàn)閇e4+e2,e10+e5].

分析 根據(jù)行列式運(yùn)算可得:f(x)=(ex2+ex,x∈[2,5];利用換元法與二次函數(shù)單調(diào)性可求出f(x)值域范圍.

解答 解:根據(jù)行列式運(yùn)算:f(x)=$|\begin{array}{l}{{e}^{x}-1}&{-2}\\{1}&{{e}^{x}+2}\end{array}|$=(ex2+ex;
$|\begin{array}{l}{x-3}&{-1}\\{2}&{4-x}\end{array}|$=-x2+7x-10≥0 可解得:x∈[2,5];
令t=ex∈[e2,e5];
則 g(t)=t2+t;
函數(shù)g(t) 開口朝上,對(duì)稱軸為:t=$-\frac{1}{2}$,則可知函數(shù)g(t)在(-$\frac{1}{2}$,+∞)上函數(shù)單調(diào)遞增;
故g(t)min=e4+e2,g(t)max=e10+e5;
故答案為:[e4+e2,e10+e5]

點(diǎn)評(píng) 本題主要考查了行列式基礎(chǔ)運(yùn)算,以及換元法與二次函數(shù)性質(zhì),屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知F是拋物線C:y2=8x的焦點(diǎn),直線y=kx-3k與C交于M,N兩點(diǎn),與C的準(zhǔn)線相交于點(diǎn)P,|$\overrightarrow{MF}$|=4,且$\overrightarrow{PM}$=λ$\overrightarrow{MN}$(λ∈R),則λ=( 。
A.$\frac{8}{5}$B.$\frac{2}{3}$C.$\frac{4}{7}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)y=$\sqrt{2x+1}$+$\sqrt{3-4x}$的定義域?yàn)椋ā 。?table class="qanwser">A.$(-\frac{1}{2},\frac{3}{4})$B.$[{-\frac{1}{2},\frac{3}{4}}]$C.$(-∞,\frac{1}{2}]$D.$(-\frac{1}{2},0)∪(0,+∞)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知集合A={x|a≤x≤a+3},B={x|x<-1或x>5}.
(1)若A∩B=∅,求a的取值范圍;
(2)若A∪B=B,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若平面區(qū)域$\left\{\begin{array}{l}x+y-3≥0\\ 2x-y-3≤0\\ x-2y+3≥0\end{array}\right.$夾在兩條斜率為1的平行直線之間,則這兩條平行直線間的距離的最小值是$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知橢圓C:$\frac{{x}^{2}}{4}$+y2=1,點(diǎn)F1、F2為橢圓的左、右焦點(diǎn),點(diǎn)P為橢圓上的一點(diǎn).
(1)當(dāng)∠F1PF2為直角,求P點(diǎn)橫坐標(biāo)的值;
(2)當(dāng)∠F1PF2=60°時(shí),求△F1PF2面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.△ABC的內(nèi)角A,B滿足cosAcosB>sinAsinB,則△ABC是( 。
A.銳角三角形B.鈍角三角形C.直角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.點(diǎn)M與定點(diǎn)F(0,2)的距離和它到定直線y=8的距離的比是1:2,求點(diǎn)的軌跡方程式,并說(shuō)明軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.函數(shù)$f(x)=\frac{{{{log}_2}(3-x)}}{{\sqrt{81-{x^2}}}}$的定義域?yàn)椋?9,3).

查看答案和解析>>

同步練習(xí)冊(cè)答案