如圖所示,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)M在AD1上移動,點(diǎn)N在BD上移動,D1M=DN=a(0<a<),連接MN.

(1)證明對任意a∈(0,),總有MN∥平面DCC1D1.
(2)當(dāng)a為何值時,MN的長最小?

(1)見解析  (2) 當(dāng)a=時,MN的長有最小值

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,四棱錐中,平面,底面為矩形,的中點(diǎn).

(1)求證:
(2)在線段上是否存在一點(diǎn),使得平面?若存在,求出的長;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱錐P-ABC中,△PAC,△ABC分別是以A、B為直角頂點(diǎn)的等腰直角三角形,AB=1.現(xiàn)給出三個條件:①PB=;②PB⊥BC;③平面PAB⊥平面ABC.試從中任意選取一個作為已知條件,并證明:PA⊥平面ABC;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在空間四邊形中,分別是上的點(diǎn),分別是上的點(diǎn),且,求證:三條直線相交于同一點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在四面體ABCD中作截面PQR,若PQ,CB的延長線交于M,RQ,DB的延長線交于N,RP,DC的延長線交于K,

求證:M,N,K三點(diǎn)共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在三棱柱ABCA1B1C1中,側(cè)面AA1C1C⊥底面ABCAA1A1CAC=2,ABBCABBC,OAC中點(diǎn).
 
(1)證明:A1O⊥平面ABC
(2)若E是線段A1B上一點(diǎn),且滿足VEBCC1·VABCA1B1C1,求A1E的長度.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在四棱錐PABCD中,PA⊥平面ABCD,△ABC是正三角形,ACBD的交點(diǎn)M恰好是AC的中點(diǎn),又∠CAD=30°,PAAB=4,點(diǎn)N在線段PB上,且.

(1)求證:BDPC
(2)求證:MN∥平面PDC;
(3)設(shè)平面PAB∩平面PCDl,試問直線l是否與直線CD平行,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點(diǎn).
 
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C­PB­A的余弦值..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,在矩形中,點(diǎn)為邊上的點(diǎn),點(diǎn)為邊的中點(diǎn),,現(xiàn)將沿邊折至位置,且平面平面.

(1) 求證:平面平面;
(2) 求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案