【題目】在四棱錐中,平面平面, , , 為中點(diǎn), , .
(1)求證:平面平面;
(2)求二面角的余弦值.
【答案】(1)見(jiàn)解析;(2).
【解析】試題分析:
(1)由并結(jié)合平面幾何知識(shí)可得.又由及平面平面可得平面,于是得,由線面垂直的判定定理可得平面,進(jìn)而可得平面平面.(2)根據(jù),建立以為坐標(biāo)原點(diǎn)的空間直角坐標(biāo)系,通過(guò)求出平面和平面法向量的夾角并結(jié)合圖形可得所求二面角的余弦值.
試題解析:
(1)由條件可知, ,
,
,
.
,且為中點(diǎn),
.
∵, , ,
平面.
又平面,
.
,
平面.
平面,
平面平面.
(2)由(1)知,以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,
則, , , ,
∴, , , ,
設(shè)為平面的一個(gè)法向量,
由,得.
令,得.
同理可得平面的一個(gè)法向量.
∴.
由圖形知二面角為銳角,
∴二面角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(其中是常數(shù),,),函數(shù)的導(dǎo)函數(shù)為,且.
(Ⅰ)若,求曲線在點(diǎn)處的切線方程;
(Ⅱ)當(dāng)時(shí),若函數(shù)在區(qū)間上的最大值為,試求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓M的方程為x2+(y-2)2=1,直線l的方程為x-2y=0,點(diǎn)P在直線l上,過(guò)點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(Ⅰ)若∠APB=60°,試求點(diǎn)P的坐標(biāo);
(Ⅱ)若P點(diǎn)的坐標(biāo)為(2,1),過(guò)P作直線與圓M交于C,D兩點(diǎn),當(dāng)CD=時(shí),求直線CD的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率,且橢圓與圓的4個(gè)交點(diǎn)恰為一個(gè)正方形的4個(gè)頂點(diǎn).
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)為橢圓的下頂點(diǎn), 為橢圓上與不重合的兩點(diǎn),若直線與直線的斜率之和為,試判斷是否存在定點(diǎn),使得直線恒過(guò)點(diǎn),若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李從網(wǎng)上購(gòu)買了一件商品,快遞員計(jì)劃在下午5:00-6:00之間送貨上門,已知小李下班到家的時(shí)間為下午5:30-6:00.快遞員到小李家時(shí),如果小李未到家,則快遞員會(huì)電話聯(lián)系小李.若小李能在10分鐘之內(nèi)到家,則快遞員等小李回來(lái);否則,就將商品存放在快遞柜中.則小李需要去快遞柜收取商品的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(是自然對(duì)數(shù)的底數(shù))
(1)判斷函數(shù)極值點(diǎn)的個(gè)數(shù),并說(shuō)明理由;
(2)若, ,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班級(jí)甲、乙兩個(gè)小組各有10位同學(xué),在一次期中考試中,兩個(gè)小組同學(xué)的數(shù)學(xué)成績(jī)?nèi)缦拢?/span>
甲組:94,69,73,86,74,75,86,88,97,98;
乙組:75,92,82,80,95,81,83,91,79,82.
畫出這兩個(gè)小組同學(xué)數(shù)學(xué)成績(jī)的莖葉圖,判斷哪一個(gè)小組同學(xué)的數(shù)學(xué)成績(jī)差異較大,并說(shuō)明理由;
從這兩個(gè)小組數(shù)學(xué)成績(jī)?cè)?0分以上的同學(xué)中,隨機(jī)選取2人在全班介紹學(xué)習(xí)經(jīng)驗(yàn),求選出的2位同學(xué)不在同一個(gè)小組的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的離心率為,其上焦點(diǎn)到直線的距離為.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)的直線交橢圓于,兩點(diǎn).試探究以線段為直徑的圓是否過(guò)定點(diǎn)?若過(guò),求出定點(diǎn)坐標(biāo),若不過(guò),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com