【題目】已知函數(shù).

Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

Ⅱ)當(dāng)時(shí),證明.

【答案】(Ⅰ)詳見(jiàn)解析;(Ⅱ)詳見(jiàn)解析.

【解析】試題分析:()易求得函數(shù)的定義域?yàn)?/span>,由函數(shù),則,令,即可求得函數(shù)的單調(diào)區(qū)間;

)當(dāng)時(shí), ,要證,只需證,所以此問(wèn)就是求函數(shù)在定義域區(qū)間的最小值.

試題解析: ()易求得函數(shù)的定義域?yàn)?/span>,

已知函數(shù),

所以,

,即

當(dāng)時(shí), 恒成立,所以函數(shù)的單調(diào)遞增區(qū)間是,無(wú)單調(diào)遞減區(qū)間。

當(dāng)時(shí),不等式的解為

又因?yàn)?/span>

所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為

當(dāng)時(shí),不等式的解為

又因?yàn)?/span>

所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為

綜上所述,當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,無(wú)單調(diào)遞減區(qū)間。

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為

當(dāng)時(shí),函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為

)當(dāng)時(shí),

所以

已知

,得

所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間為

所以

所以

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,平面平面 , , 中點(diǎn), .

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)教育部最新消息,2020年高考數(shù)學(xué)將是最后一年實(shí)行文理分科,由于課程大綱與命題方向出現(xiàn)了變動(dòng),試題難度也可能會(huì)做出相應(yīng)調(diào)整.為了評(píng)估學(xué)生在2020年高考復(fù)習(xí)情況,某中學(xué)組織本校540名考生參加市模擬考試,現(xiàn)采用分層抽樣的方法從文、理科考生中分別抽取6030份數(shù)學(xué)試卷進(jìn)行成績(jī)分析,得到下面的成績(jī)頻數(shù)分布表:

分?jǐn)?shù)分組

文科頻數(shù)

12

4

10

11

23

理科頻數(shù)

3

7

2

10

8

由此可估計(jì)文科考生的不及格人數(shù)(90分為及格分?jǐn)?shù)線)大約為(

A.128B.156C.204D.132

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)若,求的單調(diào)區(qū)間;

2)若在區(qū)間上是增函數(shù),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】表示一位騎自行車和一位騎摩托車的旅行者在相距80 km的甲、乙兩城間從甲城到乙城所行駛的路程與時(shí)間之間的函數(shù)關(guān)系,有人根據(jù)函數(shù)圖象,提出了關(guān)于這兩個(gè)旅行者的如下信息:

①騎自行車者比騎摩托車者早出發(fā)3 h,晚到1 h;

②騎自行車者是變速運(yùn)動(dòng),騎摩托車者是勻速運(yùn)動(dòng);

③騎摩托車者在出發(fā)1.5 h后追上了騎自行車者;

④騎摩托車者在出發(fā)1.5 h后與騎自行車者速度一樣.

其中,正確信息的序號(hào)是________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) .

1求函數(shù)的單調(diào)區(qū)間;

2)若,成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點(diǎn),.

(1)證明:平面;

(2)設(shè)點(diǎn)是線段的中點(diǎn),求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項(xiàng)和為6,且成等比數(shù)列

1)求數(shù)列的通項(xiàng)公式;

2)設(shè),數(shù)列的前項(xiàng)和為,求使的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銀行對(duì)某市最近5年住房貸款發(fā)放情況(按每年6月份與前一年6月份為1年統(tǒng)計(jì))作了統(tǒng)計(jì)調(diào)查,得到如下數(shù)據(jù):

年份

2014

2015

2016

2017

2018

貸款(億元)

50

60

70

80

100

(1)將上表進(jìn)行如下處理:,

得到數(shù)據(jù):

1

2

3

4

5

0

1

2

3

5

試求的線性回歸方程,再寫(xiě)出的線性回歸方程.

(2)利用(1)中所求的線性回歸方程估算2019年房貸發(fā)放數(shù)額.

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案