【題目】如圖,拋物線E:y2=4x的焦點為F,準線l與x軸的交點為A.點C在拋物線E上,以C為圓心, |CO| 為半徑作圓,設(shè)圓C與準線l交于不同的兩點M,N.
(1)若點C的縱坐標為2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圓C的半徑.
【答案】
(1)
【解答】拋物線y2=4x的準線l的方程為x=-1,
由點C的縱坐標為2,得點C的坐標為(1,2),所以點C到準線l的距離d=2,又|CO|= .所以 .
(2)
【解答】設(shè) ,則圓C的方程為 ,
即x2- x+y2-2y0y=0.由x=-1,得y2-2y0y+1+ =0,
設(shè)M(-1,y1),N(-1,y2),則:
由|AF|2=|AM|·|AN|,得|y1y2|=4,
所以 +1=4,解得y0=± ,此時Δ>0,
所以圓心C的坐標為 或 ,
從而|CO|2= ,|CO|= ,即圓C的半徑為 .
【解析】垂徑定理求圓的弦長MN,第 (2)問,先設(shè)C的坐標,寫出圓方程,聯(lián)立方程,然后結(jié)合已知條件列式求解.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域為的奇函數(shù)的圖像是一條連續(xù)不斷的曲線,當(dāng)時,;當(dāng)時,,且,則關(guān)于的不等式的解集為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(x+1)n=a0+a1(x-1)+a2(x-1)2+...+an(x-1)n ,(其中 ).
(1)求 a0 及Sn=a1+a2+...+an ;
(2)試比較 Sn 與(n-2)2n+2n2 的大小,并用數(shù)學(xué)歸納法給出證明過程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知冪函數(shù)y=f(x)經(jīng)過點(2, ).
(1)試求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性并寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方體ABCD﹣A1B1C1D1中,點O為線段BD的中點,設(shè)點P在線段CC1上,直線OP與平面A1BD所成的角為α,則sinα的取值范圍是( )
A.[ ,1]
B.[ ,1]
C.[ , ]
D.[ ,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與拋物線交于A、B兩點,線段AB的垂直平分線與直線y=-5交于Q點.
(1)求點Q的坐標;
(2)當(dāng)P為拋物線上位于線段AB下方(含A、B)的動點時,求ΔOPQ面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線E:y2=2px(p>0)的準線與x軸交于點K,過點K作圓C:(x﹣2)2+y2=1的兩條切線,切點為M,N,|MN|=
(1)求拋物線E的方程
(2)設(shè)A、B是拋物線E上分別位于x軸兩側(cè)的兩個動點,且 = (其中O為坐標原點)
①求證:直線AB必過定點,并求出該定點Q的坐標
②過點Q作AB的垂線與拋物線交于G、D兩點,求四邊形AGBD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 C 的中心在坐標原點,焦點在 X 軸上,橢圓 C 上的點到焦點距離的最大值為3,最小值為1.
(1)求橢圓 C 的標準方程;
(2)若直線 與橢圓 C 相交于 A,B 兩點( A,B 不是左右頂點),且以 AB 為直徑的圖過橢圓 C 的右頂點.求證:直線 l 過定點,并求出該定點的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com