【題目】已知冪函數(shù)y=f(x)經(jīng)過點(diǎn)(2, ).
(1)試求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性并寫出函數(shù)的單調(diào)區(qū)間.
【答案】
(1)解:由題意,得f(2)=2a= <a=﹣3,
故函數(shù)解析式為f(x)=x﹣3
(2)解:∵f(x)=x﹣3= ,
∴要使函數(shù)有意義,則x≠0,
即定義域?yàn)椋ī仭蓿?)∪(0,+∞),關(guān)于原點(diǎn)對稱,
∵f(﹣x)=(﹣x)﹣3=﹣x﹣3=﹣f(x),
∴該冪函數(shù)為奇函數(shù).
當(dāng)x>0時(shí),根據(jù)冪函數(shù)的性質(zhì)可知f(x)=x﹣3.在(0,+∞)為減函數(shù),
∵函數(shù)f(x)是奇函數(shù),
∴在(﹣∞,0)函數(shù)也為減函數(shù),
故其單調(diào)減區(qū)間為(﹣∞,0),(0,+∞)
【解析】(1)利用待定系數(shù)法即可求函數(shù)解析式;(2)根據(jù)函數(shù)奇偶性和單調(diào)性的定義即可判斷函數(shù)的奇偶性并寫出函數(shù)的單調(diào)區(qū)間.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用奇偶性與單調(diào)性的綜合的相關(guān)知識可以得到問題的答案,需要掌握奇函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相同的單調(diào)性;偶函數(shù)在關(guān)于原點(diǎn)對稱的區(qū)間上有相反的單調(diào)性.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=x2+2x.
(Ⅰ)求f(0)的值;
(Ⅱ)求此函數(shù)在R上的解析式;
(Ⅲ)若對任意的t∈R,不等式f(t+1)+f(m﹣2t2)<0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣3x+2=0},B={x|x2﹣mx+m﹣1=0}若A∪B=A,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)在高二年級開設(shè)大學(xué)選修課程《線性代數(shù)》,共有名同學(xué)選修,其中男同學(xué)名,女同學(xué)名.為了對這門課程的教學(xué)效果進(jìn)行評估,學(xué)校按性別采取分層抽樣的方法抽取人進(jìn)行考核.
(1)求抽取的人中男、女同學(xué)的人數(shù);
(2)考核前,評估小組打算從選出的中隨機(jī)選出名同學(xué)進(jìn)行訪談,求選出的兩名同學(xué)中恰有一名女同學(xué)的概率;
(3)考核分答辯和筆試兩項(xiàng). 位同學(xué)的筆試成績分別為;結(jié)合答辯情況,他們的考核成績分別為.這位同學(xué)筆試成績與考核成績的方差分別記為,試比較和的大小.(只需寫出結(jié)論)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在定義域單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(2)令, ,討論函數(shù)的單調(diào)區(qū)間;
(3)如果在(1)的條件下, 在內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=x3-3ax2+3bx的圖像與直線12x+y-1=0相切于點(diǎn)(1,-11)。
(1)求a,b的值;
(2)討論函數(shù)f(x)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線l與x軸的交點(diǎn)為A.點(diǎn)C在拋物線E上,以C為圓心, |CO| 為半徑作圓,設(shè)圓C與準(zhǔn)線l交于不同的兩點(diǎn)M,N.
(1)若點(diǎn)C的縱坐標(biāo)為2,求|MN| .
(2)若|AF|2=|AM|·|AN| ,求圓C的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(2-a)(x-1)-2lnx(a∈R).
(1)若曲線g(x)=f(x)+x上點(diǎn)(1,g(1))處的切線過點(diǎn)(0,2),求函數(shù)g(x)的單調(diào)減區(qū)間;
(2)若函數(shù)y=f(x)在區(qū)間(0, )內(nèi)無零點(diǎn),求實(shí)數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若在點(diǎn)處的切線為,求的值;
(2)求的單調(diào)區(qū)間;
(3)若,求證:在時(shí),.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com