【題目】在鈍角△ABC中,∠A為鈍角,令 = , = ,若 =x +y (x,y∈R).現(xiàn)給出下面結(jié)論:
①當(dāng)x= 時(shí),點(diǎn)D是△ABC的重心;
②記△ABD,△ACD的面積分別為SABD , SACD , 當(dāng)x= 時(shí), ;
③若點(diǎn)D在△ABC內(nèi)部(不含邊界),則 的取值范圍是 ;
④若 ,其中點(diǎn)E在直線BC上,則當(dāng)x=4,y=3時(shí),λ=5.
其中正確的有(寫(xiě)出所有正確結(jié)論的序號(hào)).

【答案】①②③
【解析】解:①設(shè)BC的中點(diǎn)為M,則 = ,
當(dāng)x=y= 時(shí), =
∴D為AM靠近M的三等分點(diǎn),故D為△ABC的重心.故①正確.
②設(shè) , ,則SAPD= SABD , SAQD= SACD
,∴SAPD=SAQD , 即 SABD= SACD
,故②正確.
③∵D在△ABC的內(nèi)部,∴ ,作出平面區(qū)域如圖所示:

=k,則k為過(guò)點(diǎn)N(﹣2,﹣1)的點(diǎn)與平面區(qū)域內(nèi)的點(diǎn)(x,y)的直線的斜率.
∴k的最小值為kNS= ,最大值為kNR=1.故③正確.
④當(dāng)x=4,y=3時(shí), ,
,∴ = ,
∵E在BC上,∴ =1,λ=7,故④錯(cuò)誤.
所以答案是:①②③.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,則不等式f(x)≥x2的解集是(
A.[﹣1,1]
B.[﹣2,2]
C.[﹣2,1]
D.[﹣1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知不等式的解集為(1,t),記函數(shù).

(1)求證:函數(shù)y=f(x)必有兩個(gè)不同的零點(diǎn);

(2)若函數(shù)y=f(x)的兩個(gè)零點(diǎn)分別為,,試將表示成以為自變量的函數(shù),并求的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下圖是我國(guó)2008年至2014年生活垃圾無(wú)害化處理量(單位:億噸)的折線圖.

Ⅰ)由折線圖看出,可用線性回歸模型擬合yt的關(guān)系,請(qǐng)用相關(guān)系數(shù)加以說(shuō)明;

Ⅱ)建立y關(guān)于t的回歸方程(系數(shù)精確到0.01),預(yù)測(cè)2016年我國(guó)生活垃圾無(wú)害化處理量.

附注:

參考數(shù)據(jù):,,

≈2.646.

參考公式:相關(guān)系數(shù)

回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)關(guān)于x的一元二次方程,其中a,b是某范圍內(nèi)的隨機(jī)數(shù),分別在下列條件下,求上述方程有實(shí)根的概率.

(1)若隨機(jī)數(shù)a,b∈{1,2,3,4,5,6};

(2)若a是從區(qū)間[0,5]中任取的一個(gè)數(shù),b是從區(qū)間[2,4]中任取的一個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計(jì)算數(shù)列{2n1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為a元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,且保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系.發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和費(fèi)率浮動(dòng)比率表

浮動(dòng)因素

浮動(dòng)比率

A1

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

A2

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

A3

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

A4

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

A5

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

A6

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

A1

A2

A3

A4

A5

A6

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē).假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5 000元,一輛非事故車(chē)盈利10 000元.且各種投保類(lèi)型的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:

①若該銷(xiāo)售商店內(nèi)有6輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選2輛車(chē),求這2輛車(chē)恰好有一輛為事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列{xn}滿(mǎn)足x1=0,xn+1=﹣x2n+xn+c(n∈N*).
(Ⅰ)證明:{xn}是遞減數(shù)列的充分必要條件是c<0;
(Ⅱ)求c的取值范圍,使{xn}是遞增數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案