【題目】閱讀如圖所示的程序框圖,則該算法的功能是(

A.計(jì)算數(shù)列{2n1}前5項(xiàng)的和
B.計(jì)算數(shù)列{2n﹣1}前5項(xiàng)的和
C.計(jì)算數(shù)列{2n1}前6項(xiàng)的和
D.計(jì)算數(shù)列{2n﹣1}前6項(xiàng)的和

【答案】C
【解析】解:由算法的流程知,第一次運(yùn)行,A=2×0+1=1,i=1+1=2;
第二次運(yùn)行,A=2×1+1=3,i=2+1=3;
第三次運(yùn)行,A=2×3+1=7,i=3+1=4;
第四次運(yùn)行,A=2×7+1=15,i=5;
第五次運(yùn)行,A=2×15+1=31,i=6;
第六次運(yùn)行,A=2×31+1=63,i=7;滿足條件i>6,終止運(yùn)行,輸出A=63,
∴A=1+2+22+…+25= =26﹣1=64﹣1=63.
故選:C.
【考點(diǎn)精析】本題主要考查了程序框圖的相關(guān)知識(shí)點(diǎn),需要掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個(gè)程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結(jié)論正確的是(請(qǐng)將你認(rèn)為正確的序號(hào)都填上)
·(1)f(x)是R上的單調(diào)遞減函數(shù);
·(2)對(duì)于任意x∈R,f(x)+x>0恒成立;
·(3)對(duì)于任意a∈R,關(guān)于x的方程f(x)=a都有解;
·(4)f(x)存在反函數(shù)f1(x),且對(duì)于任意x∈R,總有f(x)=f1(x)成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若樣本的平均數(shù)是,方差是,則對(duì)樣本,下列結(jié)論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在鈍角△ABC中,∠A為鈍角,令 = = ,若 =x +y (x,y∈R).現(xiàn)給出下面結(jié)論:
①當(dāng)x= 時(shí),點(diǎn)D是△ABC的重心;
②記△ABD,△ACD的面積分別為SABD , SACD , 當(dāng)x= 時(shí), ;
③若點(diǎn)D在△ABC內(nèi)部(不含邊界),則 的取值范圍是
④若 ,其中點(diǎn)E在直線BC上,則當(dāng)x=4,y=3時(shí),λ=5.
其中正確的有(寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機(jī)抽取60名學(xué)生,將其數(shù)學(xué)成績(jī)(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分?jǐn)?shù)在[120,130)內(nèi)的頻率;

(2)估計(jì)本次考試的中位數(shù);

(3)用分層抽樣的方法在分?jǐn)?shù)段為[110,130)的學(xué)生中抽取一個(gè)容量為6的樣本,將該樣本看成一個(gè)總體,從中任取2人,求至多有1人在分?jǐn)?shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,底面為正方形,.

(1)證明:面;

(2)若與底面所成的角為, ,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋中裝有5個(gè)大小相同的球,其中有2個(gè)白球,2個(gè)黑球,1個(gè)紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時(shí)即終止,用表示終止取球時(shí)所需的取球次數(shù),則隨機(jī)變量的數(shù)字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=3x+λ3x(λ∈R).
(1)若f(x)為奇函數(shù),求λ的值和此時(shí)不等式f(x)>1的解集;
(2)若不等式f(x)≤6對(duì)x∈[0,2]恒成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PD⊥底面ABCD,AB∥CD,∠BAD= , AB=2,CD=3,M為PC上一點(diǎn),PM=2MC.
(Ⅰ)證明:BM∥平面PAD;
(Ⅱ)若AD=2,PD=3,求二面角D﹣MB﹣C的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案