【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ24ρsinθ)=0

1)求曲線C的直角坐標(biāo)方程;

2)若直線l的參數(shù)方程是α為參數(shù)),且α∈(π)時(shí),直線l與曲線C有且只有一個(gè)交點(diǎn)P,求點(diǎn)P的極徑.

【答案】1.(24

【解析】

1)展開ρ24ρsinθ=,利用極坐標(biāo)和直角坐標(biāo)互化公式,即得解.

2)先轉(zhuǎn)化直線l的參數(shù)方程為一般方程,利用圓心到直線的距離等于半徑可得解tanα,求出P的坐標(biāo),轉(zhuǎn)化為極坐標(biāo),即得解.

由極坐標(biāo)和直角坐標(biāo)互化公式:

曲線C的極坐標(biāo)方程為ρ24ρsinθ=

轉(zhuǎn)換為直角坐標(biāo)方程為,

2)直線l的參數(shù)方程是α為參數(shù)),且α,π)時(shí),轉(zhuǎn)換為直角坐標(biāo)方程為

由于直線l與曲線C有且只有一個(gè)交點(diǎn)P,

所以圓心()到直線的距離d

α∈(,π

解得tanα(舍去)或-1

故直線l的方程為

與圓C聯(lián)立可得:

極徑長為ρ

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù))的圖象為曲線

)求曲線上任意一點(diǎn)處的切線的斜率的取值范圍;

)若曲線上存在兩點(diǎn)處的切線互相垂直,求其中一條切線與曲線的切點(diǎn)的橫坐標(biāo)的取值范圍;

)試問:是否存在一條直線與曲線C同時(shí)切于兩個(gè)不同點(diǎn)?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在四棱錐中,,,的中點(diǎn),是等邊三角形,平面平面.

1)求證:平面

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρsin2θ4acosθ,直線l與曲線C交于不同的兩點(diǎn)M,N

1)求實(shí)數(shù)a的取值范圍;

2)已知a0,設(shè)點(diǎn)P(﹣1,﹣2),若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,直四棱柱ABCDA1B1C1D1,底面ABCD是邊長為6的正方形,M,N分別為線段AC1D1C上的動點(diǎn),若直線MN與平面B1BCC1沒有公共點(diǎn)或有無數(shù)個(gè)公共點(diǎn),點(diǎn)EMN的中點(diǎn),則E點(diǎn)的軌跡長度為_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】1772年德國的天文學(xué)家波得發(fā)現(xiàn)了求太陽的行星距離的法則,記地球距離太陽的平均距離為10,可以算得當(dāng)時(shí)已知的六大行星距離太陽的平均距離如下表:

星名

水星

金星

地球

火星

木星

土星

與太陽的距離

4

7

10

16

52

100

除水星外,其余各星與太陽的距離都滿足波得定則(某一數(shù)列規(guī)律),當(dāng)時(shí)德國數(shù)學(xué)家高斯根據(jù)此定則推算,火星和木星之間距離太陽28還有一顆大行星,1801年,意大利天文學(xué)家皮亞齊經(jīng)過觀測,果然找到了火星和木星之間距離太陽28的谷神星以及它所在的小行星帶,請你根據(jù)這個(gè)定則,估算從水星開始由近到遠(yuǎn)算,第10個(gè)行星與太陽的平均距離大約是(

A.388B.772C.1540D.3076

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線過橢圓的右焦點(diǎn),拋物線的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓兩點(diǎn),點(diǎn)在直線上的射影依次為.

(1)求橢圓的方程;

(2)若直線軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;

(3)當(dāng)變化時(shí),直線是否相交于定點(diǎn)?若是,請求出定點(diǎn)的坐標(biāo),并給予證明;否則,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年國際乒聯(lián)總決賽在韓國仁川舉行,比賽時(shí)間為12131216日,在男子單打項(xiàng)目,中國隊(duì)準(zhǔn)備選派4人參加.已知國家一線隊(duì)共6名隊(duì)員,二線隊(duì)共4名隊(duì)員.

1)求恰好有3名國家一線隊(duì)隊(duì)員參加比賽的概率;

2)設(shè)隨機(jī)變量X表示參加比賽的國家二線隊(duì)隊(duì)員的人數(shù),求X的分布列;

3)男子單打決賽是林高遠(yuǎn)(中國)對陣張本智和(日本),比賽采用七局四勝制,已知在每局比賽中,林高遠(yuǎn)獲勝的概率為,張本智和獲勝的概率為,前兩局比賽雙方各勝一局,且各局比賽的結(jié)果相互獨(dú)立,求林高遠(yuǎn)獲得男子單打冠軍的概率.

查看答案和解析>>

同步練習(xí)冊答案