【題目】已知在四棱錐中,,,是的中點(diǎn),是等邊三角形,平面平面.
(1)求證:平面;
(2)求二面角的余弦值.
【答案】(1)見解析(2)
【解析】
(1)取的中點(diǎn)為,連結(jié),,,設(shè)交于,連結(jié).證明,,即可證平面;(2)取的中點(diǎn)為,以為空間坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系.設(shè),利用向量法求二面角的余弦值.
(1)證明:取的中點(diǎn)為,連結(jié),,,設(shè)交于,連結(jié).
因?yàn)?/span>,,
四邊形與四邊形均為菱形,
, ,,
因?yàn)?/span>為等邊三角形,為中點(diǎn),
,
因?yàn)槠矫?/span>平面,且平面平面.
平面且,
平面
因?yàn)?/span>平面,
,
因?yàn)?/span>H,分別為, 的中點(diǎn),
,
.
又因?yàn)?/span> ,
平面,
平面.
(2)取的中點(diǎn)為,以為空間坐標(biāo)原點(diǎn),分別以的方向?yàn)?/span>軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系.
設(shè),則,,,,
,,
設(shè)平面的一法向量.
由 .令,則.
由(1)可知,平面的一個(gè)法向量,
二面角的平面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.
(1)求曲線C的普通方程;
(2)直線l的參數(shù)方程為,(t為參數(shù)),直線l與x軸交于點(diǎn)F,與曲線C的交點(diǎn)為A,B,當(dāng)取最小值時(shí),求直線l的直角坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某海濱養(yǎng)殖場有一塊可用水城,該養(yǎng)殖場用隔離網(wǎng)把該水域分為兩個(gè)部分,其中百米,現(xiàn)計(jì)劃過處再修建一條直線型隔離網(wǎng),其端點(diǎn)分別在上,記為
(1)若要使得所圍區(qū)域面積不大于平方百米,求的取值范圍:
(2)若要在區(qū)域內(nèi)養(yǎng)殖魚類甲,區(qū)域內(nèi)養(yǎng)殖魚類乙,已知魚類甲的養(yǎng)殖成本是萬元/平方百米,魚類乙的養(yǎng)殖成本是萬元/平方百米.試確定的值,使得養(yǎng)殖成本最小,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓的離心率為,以原點(diǎn)為圓心,橢圓短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)M,N是橢圓上關(guān)于x軸對稱的兩點(diǎn),P是橢圓上不同于M,N的一點(diǎn),直線PM,PN交x軸于D(xD,0)E(xE,0),證明:xDxE為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國北京世界園藝博覽會于2019年4月29日至10月7日在北京市延慶區(qū)舉行.組委會為方便游客游園,特推出“導(dǎo)引員”服務(wù).“導(dǎo)引員”的日工資方案如下:
方案:由三部分組成
(表一)
底薪 | 150元 |
工作時(shí)間 | 6元/小時(shí) |
行走路程 | 11元/公里 |
方案:由兩部分組成:(1)根據(jù)工作時(shí)間20元/小時(shí)計(jì)費(fèi);(2)行走路程不超過4公里時(shí),按10元/公里計(jì)費(fèi);超過4公里時(shí),超出部分按15元/公里計(jì)費(fèi).已知“導(dǎo)引員”每天上班8小時(shí),由于各種因素,“導(dǎo)引員”每天行走的路程是一個(gè)隨機(jī)變量.試運(yùn)行期間,組委會對某天100名“導(dǎo)引員”的行走路程述行了統(tǒng)計(jì),為了計(jì)算方便對日行走路程進(jìn)行取整處理.例如行走1.8公里按1公里計(jì)算,行走5.7公里按5公里計(jì)算.如表所示:
(表二)
行走路程 (公里) | |||||
人數(shù) | 5 | 10 | 15 | 45 | 25 |
(Ⅰ)分別寫出兩種方案的日工資(單位:元)與日行走路程(單位:公里)的函數(shù)關(guān)系
(Ⅱ)①現(xiàn)按照分層抽樣的方工式從,共抽取5人組成愛心服務(wù)隊(duì),再從這5人中抽取3人當(dāng)小紅帽,求小紅帽中恰有1人來自的概率;
②“導(dǎo)引員”小張因?yàn)樯眢w原因每天只能行走12公里,如果僅從日工資的角度考慮,請你幫小張選擇使用哪種方案會使他的日工資更高?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),若函數(shù)在,()處導(dǎo)數(shù)相等,證明:;
(2)是否存在,使直線是曲線的切線,也是曲線的切線,而且這樣的直線是唯一的,如果存在,求出直線方程,如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》規(guī)定,交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通7座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是保費(fèi)浮動機(jī)制,保費(fèi)與上一、二、三個(gè)年度車輛發(fā)生道路交通事故的情況相關(guān)聯(lián),發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如表:
某機(jī)構(gòu)為了研究某一品牌普通7座以下私家車的投保情況,隨機(jī)抽取了80輛車齡已滿三年的該品牌同型號私家車在下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:
以這80輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
(1)某家庭有一輛該品牌車且車齡剛滿三年,記為該車在第四年續(xù)保時(shí)的費(fèi)用,求的分布列;
(2)某銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基準(zhǔn)保費(fèi)的車輛記為事故車.
①若該銷售商購進(jìn)三輛車(車齡已滿三年)該品牌二手車,求這三輛車中至少有2輛事故車的概率;
②假設(shè)購進(jìn)一輛事故車虧損4000元,一輛非事故車盈利8000元.若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求其獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,以坐標(biāo)原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2﹣4ρsin(θ)=0.
(1)求曲線C的直角坐標(biāo)方程;
(2)若直線l的參數(shù)方程是(α為參數(shù)),且α∈(,π)時(shí),直線l與曲線C有且只有一個(gè)交點(diǎn)P,求點(diǎn)P的極徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在棱長為1的正方體中,E,F(xiàn)分別為線段CD和上的動點(diǎn),且滿足,則四邊形所圍成的圖形(如圖所示陰影部分)分別在該正方體有公共頂點(diǎn)的三個(gè)面上的正投影的面積之和( 。
A. 有最小值B. 有最大值C. 為定值3D. 為定值2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com