若 {an}是等比數(shù)列,a4a7=-512,a3+a8=124,且公比q為整數(shù),則a10=( )
A.256
B.-256
C.512
D.-512
【答案】分析:由題設條件知a3和a8是方程x2-124x-512=0的兩個實數(shù)根,解方程x2-124x-512=0,得x1=128,x2=-4,由公比q為整數(shù),知a3=-4,a8=128,由此能夠求出a10
解答:解:{an}是等比數(shù)列,
∵a4a7=-512,a3+a8=124,
∴a3a8=-512,a3+a8=124,
∴a3和a8是方程x2-124x-512=0的兩個實數(shù)根,
解方程x2-124x-512=0,
得x1=128,x2=-4,
∵公比q為整數(shù),
∴a3=-4,a8=128,
-4q5=128,解得q=-2,
∴a10=a8•(-2)2=128×4=512.
故選C.
點評:本題考查等比數(shù)列的通項公式的求法,是基礎題.解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列{an}的一個子數(shù)列.設數(shù)列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數(shù)列的第1項、第2項,試問當且僅當t為何值時,該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}和{bn}滿足:a=1,a1=2,a2>0,bn=
a1an+1
(n∈N*)
.且{bn}是以
a為公比的等比數(shù)列.
(Ⅰ)證明:aa+2=a1a2
(Ⅱ)若a3n-1+2a2,證明數(shù)例{cx}是等比數(shù)例;
(Ⅲ)求和:
1
a1
+
1
a2
+
1
a3
+
1
a4
+
+
1
a2n-1
+
1
a2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設m個不全相等的正數(shù)a1,a2,…,am(m≥7)依次圍成一個圓圈,
(Ⅰ)若m=2009,且a1,a2,…,a1005是公差為d的等差數(shù)列,而a1,a2009,a2008,…,a1006是公比為q=d的等比數(shù)列;數(shù)列a1,a2,…,am的前n項和Sn(n≤m)滿足:S3=15,S2009=S2007+12a1,求通項an(n≤m);
(Ⅱ)若每個數(shù)an(n≤m)是其左右相鄰兩數(shù)平方的等比中項,求證:a1+…+a6+a72+…+am2>ma1a2am

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教B版高中數(shù)學必修5 2.3等比數(shù)列練習卷(解析版) 題型:選擇題

已知數(shù)列{an}的前n項和為Sn=b×2n+a(a0,b0),若數(shù)列{an}是等比數(shù)例,則a、b應滿足的條件為(   )

(A)a-b=0   (B)a-b0   (C)a+b=0   (D)a+b0

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江蘇省無錫市錫山區(qū)羊尖高級中學高考數(shù)學模擬試卷(數(shù)學)(解析版) 題型:解答題

從數(shù)列{an}中取出部分項,并將它們按原來的順序組成一個數(shù)列,稱之為數(shù)列{an}的一個子數(shù)列.設數(shù)列{an}是一個首項為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項、第6項作為一個等比數(shù)列的第1項、第2項,試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項、第m(m≥2)項(設am=t)作為一個等比數(shù)列的第1項、第2項,試問當且僅當t為何值時,該數(shù)列為{an}的無窮等比子數(shù)列,請說明理由.

查看答案和解析>>

同步練習冊答案