【題目】已知值域為[﹣1,+∞)的二次函數(shù)滿足f(﹣1+x)=f(﹣1﹣x),且方程f(x)=0的兩個實根x1 , x2滿足|x1﹣x2|=2.
(1)求f(x)的表達式;
(2)函數(shù)g(x)=f(x)﹣kx在區(qū)間[﹣1,2]內(nèi)的最大值為f(2),最小值為f(﹣1),求實數(shù)k的取值范圍.
【答案】解:(1)∵f(﹣1+x)=f(﹣1﹣x),可得f(x)的圖象關于x=﹣1對稱,
∴設f(x)=a(x+1)2+h=ax2+2ax+a+h,
∵函數(shù)f(x)的值域為[﹣1,+∞),可得h=﹣1,
根據(jù)根與系數(shù)的關系可得x1+x2=﹣2,x1 x2=1+,
∴x1﹣x2==2,解得:a=﹣h=1,
∴f(x)=x2+2x;
(2)由題意得函數(shù)g(x)在區(qū)間[﹣1,2]遞增,
又g(x)=f(x)﹣kx=x2﹣(k﹣2)x=,
∴≤﹣1,即k≤0,
綜上:k≤0.
【解析】(1)先求出函數(shù)的對稱軸,根據(jù)根與系數(shù)的關系可得二次項系數(shù),從而求出f(x)的表達式;
(2)根據(jù)g(x)的單調(diào)性判斷出函數(shù)的對稱軸,從而求出k的范圍即可。
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,側(cè)棱SD⊥底面ABCD,點E是SC的中點,點F在SB上,且EF⊥SB.
(1)求證:SA∥平面BDE;
(2)求證SB⊥平面DEF;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】經(jīng)過中央電視臺《魅力中國城》欄目的三輪角逐,黔東南州以三輪競演總分排名第一名問鼎“最具人氣魅力城市”.如圖統(tǒng)計了黔東南州從2010年到2017年的旅游總?cè)藬?shù)(萬人次)的變化情況,從一個側(cè)面展示了大美黔東南的魅力所在.根據(jù)這個圖表,在下列給出的黔東南州從2010年到2017年的旅游總?cè)藬?shù)的四個判斷中,錯誤的是( )
A. 旅游總?cè)藬?shù)逐年增加
B. 2017年旅游總?cè)藬?shù)超過2015、2016兩年的旅游總?cè)藬?shù)的和
C. 年份數(shù)與旅游總?cè)藬?shù)成正相關
D. 從2014年起旅游總?cè)藬?shù)增長加快
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知AB是圓O的直徑,C、D是圓O上的兩個點,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧的中點;
(Ⅱ)求證:BF=FG.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設平面點集A={(x,y)|(x﹣1)2+(y﹣1)2≤1},B={(x,y)|(x+1)2+(y+1)2≤1},C={(x,y)|y﹣≥0},則(A∪B)∩C所表示的平面圖形的面積是
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知平面上的三點P(5,2)、F1(-6,0)、F2(6,0).
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設點P、F1、F2關于直線y=x的對稱點分別為P′、F1′、F2′,求以F1′、F2′為焦點且過點P′的雙曲線的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《九章算術》中“竹九節(jié)”問題:現(xiàn)有一根9節(jié)的竹子,自上而下各節(jié)的容積成等差數(shù)列,上面4節(jié)的容積共3升,下面3節(jié)的容積共4升,則第6節(jié)的容積為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點A(﹣2,0),B(0,1)在橢圓C: (a>b>0)上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)P是線段AB上的點,直線y= x+m(m≥0)交橢圓C于M、N兩點,若△MNP是斜邊長為 的直角三角形,求直線MN的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com