【題目】某校舉行了以“重溫時代經(jīng)典,唱響回聲嘹亮”為主題的“紅歌”歌詠比賽. 該校高一年級有1,2,3,4四個班參加了比賽,其中有兩個班獲獎. 比賽結(jié)果揭曉之前,甲同學(xué)說:“兩個獲獎班級在2班、3班、4班中”,乙同學(xué)說:“2班沒有獲獎,3班獲獎了”,丙同學(xué)說:“1班、4班中有且只有一個班獲獎”,丁同學(xué)說:“乙說得對”. 已知這四人中有且只有兩人的說法是正確的,則這兩人是
A. 乙,丁 B. 甲,丙 C. 甲,丁 D. 乙,丙
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校有六間不同的電腦室,每天晚上至少開放兩間,欲求不同安排方案的種數(shù),現(xiàn)有3位同學(xué)分別給出了下列三個結(jié)果:①;②26-7;③,其中正確的結(jié)論是( )
A. 僅有① B. 僅有② C. ②與③ D. 僅有③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】第35屆牡丹花會期間,我班有5名學(xué)生參加志愿者服務(wù),服務(wù)場所是王城公園和牡丹公園.
(1)若學(xué)生甲和乙必須在同一個公園,且甲和丙不能在同一個公園,則共有多少種不同的分配方案?
(2)每名學(xué)生都被隨機(jī)分配到其中的一個公園,設(shè)分別表示5名學(xué)生分配到王城公園和牡丹公園的人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩袋中各裝有大小相同的小球9個,其中甲袋中紅色、黑色、白色小球的個數(shù)分別為2、3、4,乙袋中紅色、黑色、白色小球的個數(shù)均為3,某人用左右手分別從甲、乙兩袋中取球.
(1)若左右手各取一球,求兩只手中所取的球顏色不同的概率;
(2)若左右手依次各取兩球,稱同一手中兩球顏色相同的取法為成功取法,記兩次取球的成功取法次數(shù)為隨機(jī)變量,求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知某中學(xué)高三文科班學(xué)生共有800人參加了數(shù)學(xué)與地理的水平測試,現(xiàn)學(xué)校決定利用隨機(jī)數(shù)表法從中抽取100人進(jìn)行成績抽樣調(diào)查,先將800人按001,002, ,800進(jìn)行編號;
(1)如果從第8行第7列的數(shù)開始向右讀,請你依次寫出最先檢查的3個人的編號;
(下面摘取了第7行到第9行)
(2)抽取的100的數(shù)學(xué)與地理的水平測試成績?nèi)缦卤恚?/span>
成績分為優(yōu)秀、良好、及格三個等級;橫向,縱向分別表示地理成績與數(shù)學(xué)成績,例如:表中數(shù)學(xué)成績?yōu)榱己玫墓灿?0+18+4=42,若在該樣本中,數(shù)學(xué)成績優(yōu)秀率是30%,求a,b的值:
人數(shù) | 數(shù)學(xué) | |||
優(yōu)秀 | 良好 | 及格 | ||
地理 | 優(yōu)秀 | 7 | 20 | 5 |
良好 | 9 | 18 | 6 | |
及格 | a | 4 | b |
(3)在地理成績及格的學(xué)生中,已知求數(shù)學(xué)成績?yōu)閮?yōu)秀的人數(shù)比及格的人數(shù)少的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為調(diào)查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機(jī)抽樣從該地區(qū)調(diào)查了500位老年人,結(jié)果如下:
性別 是否需要志愿者 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
(Ⅰ)估計該地區(qū)老年人中,需要志愿者提供幫助的老年人比例;
(Ⅱ)能否有的把握認(rèn)為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關(guān)?
(Ⅲ)根據(jù)(Ⅱ)中的結(jié)論,能否提供更好的調(diào)查方法來估計該地區(qū)老年人中需要志愿幫助?
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為,過點的直線與相交于兩點,點關(guān)于軸的對稱點為.
(Ⅰ)證明:點在直線上;
(Ⅱ)設(shè),求的內(nèi)切圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的圖象在點(1, )處的切線方程;
(Ⅱ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅲ)已知,對于函數(shù)圖象上任意不同的兩點,其中,直線的斜率為,記,若求證
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com