【題目】已知直線l:x-2y+2m-2=0.
(1)求過點(2,3)且與直線l垂直的直線的方程;
(2)若直線l與兩坐標(biāo)軸所圍成的三角形的面積大于4,求實數(shù)m的取值范圍.
【答案】(1);(2)
【解析】試題分析:(1)由直線的斜率為,可得所求直線的斜率為,代入點斜式方程,可得答案;(2)直線與兩坐標(biāo)軸的交點分別為,則所圍成的三角形的面積為,根據(jù)直線與兩坐標(biāo)軸所圍成的三角形的面積為大于,構(gòu)造不等式,解得答案.
試題解析:(1)與直線l垂直的直線的斜率為-2,
因為點(2,3)在該直線上,所以所求直線方程為y-3=-2(x-2),
故所求的直線方程為2x+y-7=0.
(2) 直線l與兩坐標(biāo)軸的交點分別為(-2m+2,0),(0,m-1),
則所圍成的三角形的面積為×|-2m+2|×|m-1|.
由題意可知×|-2m+2|×|m-1|>4,化簡得(m-1)2>4,
解得m>3或m<-1,
所以實數(shù)m的取值范圍是(-∞,-1)∪(3,+∞).
【方法點睛】本題主要考查直線的方程,兩條直線平行與斜率的關(guān)系,屬于簡單題. 對直線位置關(guān)系的考查是熱點命題方向之一,這類問題以簡單題為主,主要考查兩直線垂直與兩直線平行兩種特殊關(guān)系:在斜率存在的前提下,(1) ;(2),這類問題盡管簡單卻容易出錯,特別是容易遺忘斜率不存在的情況,這一點一定不能掉以輕心.
【題型】解答題
【結(jié)束】
18
【題目】在平面直角坐標(biāo)系中,已知經(jīng)過原點O的直線與圓交于兩點。
(1)若直線與圓相切,切點為B,求直線的方程;
(2)若,求直線的方程;
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,某鎮(zhèn)有一塊空地,其中, , 。當(dāng)?shù)劓?zhèn)政府規(guī)劃將這塊空地改造成一個旅游景點,擬在中間挖一個人工湖,其中都在邊上,且,挖出的泥土堆放在地帶上形成假山,剩下的地帶開設(shè)兒童游樂場. 為安全起見,需在的周圍安裝防護(hù)網(wǎng).
(1)當(dāng)時,求防護(hù)網(wǎng)的總長度;
(2)若要求挖人工湖用地的面積是堆假山用地的面積的倍,試確定 的大;
(3)為節(jié)省投入資金,人工湖的面積要盡可能小,問如何設(shè)計施工方案,可使 的面積最小?最小面積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在無窮數(shù)列中, ,對于任意,都有, .設(shè),記使得成立的n的最大值為.
(Ⅰ)設(shè)數(shù)列{an}為1,3,5,7,…,寫出b1,b2,b3的值;
(Ⅱ)若{an}為等比數(shù)列,且a2=2,求b1+b2+b3+…+b50的值;
(Ⅲ)若{bn}為等差數(shù)列,求出所有可能的數(shù)列{an}.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次國際學(xué)術(shù)會議上,來自四個國家的五位代表被安排坐在一張圓桌,為了使他們能夠自由交談,事先了解到的情況如下:
甲是中國人,還會說英語.
乙是法國人,還會說日語.
丙是英國人,還會說法語.
丁是日本人,還會說漢語.
戊是法國人,還會說德語.
則這五位代表的座位順序應(yīng)為( )
A.甲丙丁戊乙
B.甲丁丙乙戊
C.甲乙丙丁戊
D.甲丙戊乙丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓E: + =1(a>b>0)的左頂點A(﹣2,0),且點(﹣1, )在橢圓上,F(xiàn)1、F2分別是橢圓的左、右焦點.過點A作斜率為k(k>0)的直線交橢圓E于另一點B,直線BF2交橢圓E于點C.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若△CF1F2為等腰三角形,求點B的坐標(biāo);
(3)若F1C⊥AB,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知點P(0,1)在圓C:x2+y2+2mx﹣2y+m2﹣4m+1=0內(nèi),若存在過點P的直線交圓C于A、B兩點,且△PBC的面積是△PAC的面積的2倍,則實數(shù)m的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣k( +lnx),若x=2是函數(shù)f(x)的唯一一個極值點,則實數(shù)k的取值范圍為( )
A.(﹣∞,e]
B.[0,e]
C.(﹣∞,e)
D.[0,e)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)的奇偶性;
(2)判斷當(dāng)時函數(shù)的單調(diào)性,并用定義證明;
(3)若定義域為,解不等式.
【答案】(1)奇函數(shù)(2)增函數(shù)(3)
【解析】試題分析:(1)判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。(2)利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,判斷,下結(jié)論五個步驟。(3)由(1)(2)奇函數(shù)在(-1,1)為單調(diào)函數(shù),
原不等式變形為f(2x-1)<-f(x),即f(2x-1)<f(-x),再由函數(shù)的單調(diào)性及定義(-1,1)求解得x范圍。
試題解析:(1)函數(shù)為奇函數(shù).證明如下:
定義域為
又
為奇函數(shù)
(2)函數(shù)在(-1,1)為單調(diào)函數(shù).證明如下:
任取,則
,
即
故在(-1,1)上為增函數(shù)
(3)由(1)、(2)可得
則
解得:
所以,原不等式的解集為
【點睛】
(1)奇偶性:判斷與證明函數(shù)的奇偶性,首先要確定函數(shù)的定義域是否關(guān)于原點對稱,再判斷f(-x)與f(x)的關(guān)系,如果對定義域上的任意x,都滿足f(-x)=f(x)就是偶函數(shù),如果f(-x)=-f(x)就是奇函數(shù),否則是非奇非偶函數(shù)。
(2)單調(diào)性:利函數(shù)單調(diào)性定義證明單調(diào)性,按假設(shè),作差,化簡,定號,下結(jié)論五個步驟。
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù).
(1)若的定義域和值域均是,求實數(shù)的值;
(2)若在區(qū)間上是減函數(shù),且對任意的,都有,求實數(shù)的取值范圍;
(3)若,且對任意的,都存在,使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com