【題目】已知函數(shù)fx,若存在x1,x2Rx1x2,使得fx1)=fx2)成立,則實(shí)數(shù)a的取值范圍是(

A.[3+∞)B.3,+∞)C.(﹣∞,3D.(﹣∞,3]

【答案】C

【解析】

當(dāng)1,即a2時(shí),由二次函數(shù)的圖象和性質(zhì),可知存在x1x2(﹣∞,1]x1x2,使得fx1)=fx2)成立;當(dāng)1,即a2時(shí),若存在x1,x2Rx1x2,使得fx1)=fx2)成立,則﹣1+a3a7,由此能求出實(shí)數(shù)a的取值范圍.

函數(shù)fx

存在x1,x2Rx1x2,使得fx1)=fx2)成立,

當(dāng)1,即a2時(shí),由二次函數(shù)的圖象和性質(zhì),可知:

存在x1,x2(﹣∞,1]x1x2,使得fx1)=fx2)成立,

當(dāng)1,即a2時(shí),

若存在x1x2Rx1x2,使得fx1)=fx2)成立,

則﹣1+a3a7,

解得a3,

2a3,

綜上所述:實(shí)數(shù)a的取值范圍是(﹣∞,3).

故選:C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公園草坪上有一扇形小徑(如圖),扇形半徑為,中心角為,甲由扇形中心出發(fā)沿以每秒2米的速度向快走,同時(shí)乙從出發(fā),沿扇形弧以每秒米的速度向慢跑,記秒時(shí)甲、乙兩人所在位置分別為,,通過(guò)計(jì)算,判斷下列說(shuō)法是否正確:

(1)當(dāng)時(shí),函數(shù)取最小值;

(2)函數(shù)在區(qū)間上是增函數(shù);

(3)若最小,則;

(4)上至少有兩個(gè)零點(diǎn);

其中正確的判斷序號(hào)是______(把你認(rèn)為正確的判斷序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是橢圓的左、右頂點(diǎn),為橢圓上異于、的一點(diǎn).

1是橢圓的上頂點(diǎn),且直線與直線垂直,求點(diǎn)軸的距離;

2)過(guò)點(diǎn)的直線(不過(guò)坐標(biāo)原點(diǎn))與橢圓交于兩點(diǎn),且點(diǎn)軸上方,點(diǎn)軸下方,若,求直線的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng)時(shí),求函數(shù)的圖象在點(diǎn)處的切線方程;

2)討論函數(shù)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知中心在原點(diǎn)O,左右焦點(diǎn)分別為的橢圓的離心率為,焦距為,AB是橢圓上兩點(diǎn).

1)若直線與以原點(diǎn)為圓心的圓相切,且,求此圓的方程;

2)動(dòng)點(diǎn)P滿足:,直線的斜率的乘積為,求動(dòng)點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)院為篩查某種疾病,需要檢驗(yàn)血液是否為陽(yáng)性,現(xiàn)有份血液樣本,有以下兩種檢驗(yàn)方式:①逐份檢驗(yàn),列需要檢驗(yàn)次;②混合檢驗(yàn),將其)份血液樣本分別取樣混合在一起檢驗(yàn).若檢驗(yàn)結(jié)果為陰性,這份的血液全為陰性,因而這份血液樣本只要檢驗(yàn)一次就夠了,如果檢驗(yàn)結(jié)果為陽(yáng)性,為了明確這份血液究竟哪幾份為陽(yáng)性,就要對(duì)這份再逐份檢驗(yàn),此時(shí)這份血液的檢驗(yàn)次數(shù)總共為.假設(shè)在接受檢驗(yàn)的血液樣本中,每份樣本的檢驗(yàn)結(jié)果是陽(yáng)性還是陰性都是獨(dú)立的,且每份樣本是陽(yáng)性結(jié)果的概率為.

1)假設(shè)有5份血液樣本,其中只有2份樣本為陽(yáng)性,若采用逐份檢驗(yàn)的方式,求恰好經(jīng)過(guò)3次檢驗(yàn)就能把陽(yáng)性樣本全部檢驗(yàn)出來(lái)的概率.

2)現(xiàn)取其中)份血液樣本,記采用逐份檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為,采用混合檢驗(yàn)方式,樣本需要檢驗(yàn)的總次數(shù)為.

(i)運(yùn)用概率統(tǒng)計(jì)的知識(shí),若,試求關(guān)于的函數(shù)關(guān)系式;

(ii)若,且采用混合檢驗(yàn)方式可以使得樣本需要檢驗(yàn)的總次數(shù)的期望值比逐份檢驗(yàn)的總次數(shù)期望值更少,求的最大值.

參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐SABCD中,側(cè)面SCD為鈍角三角形且垂直于底面ABCD,點(diǎn)MSA的中點(diǎn),,,.

1)求證:平面SCD

2)若直線SD與底面ABCD所成的角為,求平面MBD與平面SBC所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解全市統(tǒng)考情況,從所有參加考試的考生中抽取4000名考生的成績(jī),頻率分布直方圖如下圖所示.

(1)求這4000名考生的半均成績(jī)(同一組中數(shù)據(jù)用該組區(qū)間中點(diǎn)作代表);

2)由直方圖可認(rèn)為考生考試成績(jī)z服從正態(tài)分布,其中分別取考生的平均成績(jī)和考生成績(jī)的方差,那么抽取的4000名考生成績(jī)超過(guò)84.81分(含84.81分)的人數(shù)估計(jì)有多少人?

3)如果用抽取的考生成績(jī)的情況來(lái)估計(jì)全市考生的成績(jī)情況,現(xiàn)從全市考生中隨機(jī)抽取4名考生,記成績(jī)不超過(guò)84.81分的考生人數(shù)為,求.(精確到0.001

附:;

,則;

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)古典樂(lè)器一般按八音分類.八音是我國(guó)最早按樂(lè)器的制造材料來(lái)對(duì)樂(lè)器進(jìn)行分類的方法,最先見(jiàn)于《周禮·春官·大師》,分為金、石、土、革、絲、木、匏(páo)、竹八音.其中金、石、木、革為打擊樂(lè)器,土、匏、竹為吹奏樂(lè)器,為彈撥樂(lè)器,現(xiàn)從打擊樂(lè)器、彈撥樂(lè)器中任取不同的兩音,含有彈撥樂(lè)器的概率為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案