【題目】某校學(xué)生會(huì)為了解該校學(xué)生對(duì)2017年全國(guó)兩會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對(duì)兩會(huì)“比較關(guān)注”與“不太關(guān)注”兩類.已知這200名學(xué)生中男生比女生多20人,對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)兩會(huì)“不太關(guān)注”的學(xué)生中男生比女生少5人.
(1)根據(jù)題意建立列聯(lián)表,并判斷是否有的把握認(rèn)為男生與女生對(duì)兩會(huì)的關(guān)注有差異?
(2)該校學(xué)生會(huì)從對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再?gòu)倪@7人中隨機(jī)選出2人進(jìn)行回訪,求這2人全是男生的概率.
參考公式和數(shù)據(jù):,其中.
【答案】(1)沒(méi)有的把握認(rèn)為男生與女生對(duì)兩會(huì)的關(guān)注有差異;(2).
【解析】
(1)“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,構(gòu)造方程求得列聯(lián)表數(shù)據(jù),依據(jù)公式計(jì)算得到的觀測(cè)值,可知無(wú)的把握;(2)通過(guò)分層抽樣確定抽取的男女生人數(shù),再列舉出所有可能的結(jié)果,根據(jù)古典概型得到結(jié)果.
(1)由這名學(xué)生中男生比女生多人,可得男生人數(shù)為,女生人數(shù)為,
設(shè)男生中“不太關(guān)注”的人數(shù)為,則男生中“比較關(guān)注”的人數(shù)為,
由“不太關(guān)注”的學(xué)生中男生比女生少人,可得女生中“不太關(guān)注”的人數(shù)為,
則女生中“比較關(guān)注”的人數(shù)為,
由“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,可得,解得,
則列聯(lián)表如下:
比較關(guān)注 | 不太關(guān)注 | 合計(jì) | |
男生 | |||
女生 | |||
合計(jì) |
則的觀測(cè)值,
所以沒(méi)有的把握認(rèn)為男生與女生對(duì)兩會(huì)的關(guān)注有差異.
(2)由題意得男生抽人、女生抽人,
記這名男生分別為,名女生分別為
則所有的可能情況為,,,,,,,,,,,,,,,,,,,,,共種,其中人全是男生的有,,,,,,共種,
故所求概率.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分“優(yōu)秀、合格、尚待改進(jìn)”三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高二年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高二年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:
表1:男生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 5 |
表2:女生
等級(jí) | 優(yōu)秀 | 合格 | 尚待改進(jìn) |
頻數(shù) | 15 | 3 |
(1)由表中統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下邊列聯(lián)表:
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | 總計(jì) |
(2)試采用獨(dú)立性檢驗(yàn)進(jìn)行分析,能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為“測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.
參考數(shù)據(jù)與公式:,其中.
臨界值表:
0.1 | 0.05 | 0.01 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1, =9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓:的左、右焦點(diǎn)分別為,軸,直線交軸于點(diǎn),,為橢圓上的動(dòng)點(diǎn),的面積的最大值為1.
(1)求橢圓的方程;
(2)過(guò)點(diǎn)作兩條直線與橢圓分別交于且使軸,如圖,問(wèn)四邊形的兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)創(chuàng)“市級(jí)示范性學(xué)!钡募住⒁覂伤鶎W(xué)校進(jìn)行復(fù)查驗(yàn)收,對(duì)辦學(xué)的社會(huì)滿意度一項(xiàng)評(píng)價(jià)隨機(jī)訪問(wèn)了20為市民,這20位市民對(duì)這兩所學(xué)校的評(píng)分(評(píng)分越高表明市民的評(píng)價(jià)越好)的數(shù)據(jù)如下:
甲校:58,66,71,58,67,72,82,92,83,86,67,59,86,72,78,59,68,69,73,81;
乙校:90,80,73,65,67,69,81,85,82,88,89,86,86,78,98,95,96,91,76,69,.
檢查組將成績(jī)分成了四個(gè)等級(jí):成績(jī)?cè)趨^(qū)間的為等,在區(qū)間的為等,在區(qū)間的為等,在區(qū)間為等.
(1)請(qǐng)用莖葉圖表示上面的數(shù)據(jù),并通過(guò)觀察莖葉圖,對(duì)兩所學(xué)校辦學(xué)的社會(huì)滿意度進(jìn)行比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;
(2)估計(jì)哪所學(xué)校的市民的評(píng)分等級(jí)為級(jí)或級(jí)的概率大,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的圖象關(guān)于原點(diǎn)對(duì)稱,其中為常數(shù).
(1)求的值;
(2)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍;
(3)若關(guān)于的方程在上有解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知過(guò)原點(diǎn)的兩條互相垂直的直線與拋物線相交于不同于原點(diǎn)的兩點(diǎn),且軸,的面積為16.
(1)求拋物線的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn),,為拋物線上不同的三點(diǎn),若,試問(wèn):直線是否過(guò)定點(diǎn)?若過(guò)定點(diǎn),求出定點(diǎn)坐標(biāo);若不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下結(jié)論:
①命題“若,則”的逆否命題“若,則”;
②“”是“”的充分條件;
③命題“若,則方程有實(shí)根”的逆命題為真命題;
④命題“若,則且”的否命題是真命題.
其中錯(cuò)誤的是__________.(填序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】自由購(gòu)是一種通過(guò)自助結(jié)算購(gòu)物的形式.某大型超市為調(diào)查顧客自由購(gòu)的使用情況,隨機(jī)抽取了100人,調(diào)查結(jié)果整理如下:
20以下 | [20,30) | [30,40) | [40,50) | [50,60) | [60,70] | 70以上 | |
使用人數(shù) | 3 | 12 | 17 | 6 | 4 | 2 | 0 |
未使用人數(shù) | 0 | 0 | 3 | 14 | 36 | 3 | 0 |
(Ⅰ)現(xiàn)隨機(jī)抽取1名顧客,試估計(jì)該顧客年齡在且未使用自由購(gòu)的概率;
(Ⅱ)從被抽取的年齡在使用的自由購(gòu)顧客中,隨機(jī)抽取2人進(jìn)一步了解情況,求這2人年齡都在的概率;
(Ⅲ)為鼓勵(lì)顧客使用自由購(gòu),該超市擬對(duì)使用自由購(gòu)顧客贈(zèng)送1個(gè)環(huán)保購(gòu)物袋.若某日該超市預(yù)計(jì)有5000人購(gòu)物,試估計(jì)該超市當(dāng)天至少應(yīng)準(zhǔn)備多少個(gè)環(huán)保購(gòu)物袋?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com