【題目】在中學(xué)生綜合素質(zhì)評(píng)價(jià)某個(gè)維度的測(cè)評(píng)中,分優(yōu)秀、合格、尚待改進(jìn)三個(gè)等級(jí)進(jìn)行學(xué)生互評(píng).某校高二年級(jí)有男生500人,女生400人,為了了解性別對(duì)該維度測(cè)評(píng)結(jié)果的影響,采用分層抽樣方法從高二年級(jí)抽取了45名學(xué)生的測(cè)評(píng)結(jié)果,并作出頻數(shù)統(tǒng)計(jì)表如下:

1:男生

等級(jí)

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

5

2:女生

等級(jí)

優(yōu)秀

合格

尚待改進(jìn)

頻數(shù)

15

3

1)由表中統(tǒng)計(jì)數(shù)據(jù)填寫下邊列聯(lián)表:

男生

女生

總計(jì)

優(yōu)秀

非優(yōu)秀

總計(jì)

2)試采用獨(dú)立性檢驗(yàn)進(jìn)行分析,能否在犯錯(cuò)誤的概率不超過(guò)0.1的前提下認(rèn)為測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

參考數(shù)據(jù)與公式:,其中.

臨界值表:

0.1

0.05

0.01

2.706

3.841

6.635

【答案】1)見解析(2)不能在犯錯(cuò)的概率不超過(guò)0.1的前提下認(rèn)為測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

【解析】

1)根據(jù)分層抽樣比公式求出抽取45名學(xué)生中男生和女生的人數(shù),最后完成列聯(lián)表即可;

2)根據(jù)題中所給的公式求出,結(jié)合臨界值表進(jìn)行判斷即可.

解:(1

設(shè)采用分層抽樣方法從高二年級(jí)抽取45名學(xué)生的男女生人數(shù)分別為,則有:

,解得,所以列聯(lián)表如下:

男生

女生

總計(jì)

優(yōu)秀

15

15

30

非優(yōu)秀

10

5

15

總計(jì)

25

20

45

2,

.

所以不能在犯錯(cuò)的概率不超過(guò)0.1的前提下認(rèn)為測(cè)評(píng)結(jié)果優(yōu)秀與性別有關(guān)”.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,設(shè)雙曲線的上焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)為雙曲線虛軸的左端點(diǎn),已知的離心率為,且的面積.

(1)求雙曲線的方程;

(2)設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,動(dòng)直線相切于點(diǎn),與的準(zhǔn)線相交于點(diǎn),試推斷以線段為直徑的圓是否恒經(jīng)過(guò)軸上的某個(gè)定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于任意,仍為數(shù)列中的項(xiàng),則稱數(shù)列為“回歸數(shù)列”.

1)己知(),判斷數(shù)列是否為“回歸數(shù)列”,并說(shuō)明理由;

2)若數(shù)列為“回歸數(shù)列”,,,且對(duì)于任意,均有成立.①求數(shù)列的通項(xiàng)公式;②求所有的正整數(shù)s,t,使得等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓上任意一點(diǎn)到兩焦點(diǎn)距離之和為,離心率為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)若直線的斜率為,直線與橢圓C交于兩點(diǎn).點(diǎn)為橢圓上一點(diǎn),求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲乙兩人各有三張卡片,甲的卡片分別標(biāo)有數(shù)字1、2、3,乙的卡片分別標(biāo)有數(shù)字0、1、3.兩人各自隨機(jī)抽出一張,甲抽出的卡片上的數(shù)字記為,乙抽出的卡片上的數(shù)字記為,則的積為奇數(shù)的概率為________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)當(dāng)時(shí),求的最小值;

2)是否存在實(shí)數(shù)同時(shí)滿足下列條件:①;②當(dāng)的定義域?yàn)?/span>時(shí),其值域?yàn)?/span>.若存在,求出,的值,若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩隊(duì)進(jìn)行籃球決賽,采取五場(chǎng)三勝制(當(dāng)一隊(duì)贏得三場(chǎng)勝利時(shí),該隊(duì)獲勝,決賽結(jié)束). 根據(jù)前期比賽成績(jī),甲隊(duì)的主客場(chǎng)安排依次為主主客客主”. 設(shè)甲隊(duì)主場(chǎng)取勝的概率為0.6,客場(chǎng)取勝的概率為0.5,且各場(chǎng)比賽結(jié)果相互獨(dú)立,則甲隊(duì)以3:1獲勝的概率為(

A.0.15B.0.21C.0.24D.0.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù).

(1)當(dāng)時(shí),的單調(diào)區(qū)間和極值

(2)若直線是曲線的切線的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校學(xué)生會(huì)為了解該校學(xué)生對(duì)2017年全國(guó)兩會(huì)的關(guān)注情況,隨機(jī)調(diào)查了該校200名學(xué)生,并將這200名學(xué)生分為對(duì)兩會(huì)“比較關(guān)注”與“不太關(guān)注”兩類.已知這200名學(xué)生中男生比女生多20人,對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中男生人數(shù)與女生人數(shù)之比為,對(duì)兩會(huì)“不太關(guān)注”的學(xué)生中男生比女生少5人.

(1)根據(jù)題意建立列聯(lián)表,并判斷是否有的把握認(rèn)為男生與女生對(duì)兩會(huì)的關(guān)注有差異?

(2)該校學(xué)生會(huì)從對(duì)兩會(huì)“比較關(guān)注”的學(xué)生中根據(jù)性別進(jìn)行分層抽樣,從中抽取7人,再?gòu)倪@7人中隨機(jī)選出2人進(jìn)行回訪,求這2人全是男生的概率.

參考公式和數(shù)據(jù):,其中

查看答案和解析>>

同步練習(xí)冊(cè)答案