【題目】4支足球隊(duì)進(jìn)行單循環(huán)比賽(任兩支球隊(duì)恰進(jìn)行一場(chǎng)比賽),任兩支球隊(duì)之間勝率都是.單循環(huán)比賽結(jié)束,以獲勝的場(chǎng)次數(shù)作為該隊(duì)的成績(jī),成績(jī)按從大到小排名次順序,成績(jī)相同則名次相同.下列結(jié)論中正確的是(

A.恰有四支球隊(duì)并列第一名為不可能事件B.有可能出現(xiàn)恰有三支球隊(duì)并列第一名

C.恰有兩支球隊(duì)并列第一名的概率為D.只有一支球隊(duì)名列第一名的概率為

【答案】ABD

【解析】

4支足球隊(duì)進(jìn)行單循環(huán)比賽總的比賽共有場(chǎng)比賽,比賽的所有結(jié)果共有種;

選項(xiàng)A,這6場(chǎng)比賽中不滿足4支球隊(duì)得分相同的的情況;

選項(xiàng)B,舉特例說明即可;

選項(xiàng)C,在6場(chǎng)比賽中,從中選2支球隊(duì)并列第一名有種可能,再分類計(jì)數(shù)相互獲勝的可能數(shù),最后由古典概型計(jì)算概率;

選項(xiàng)D,只有一支球隊(duì)名列第一名,則該球隊(duì)?wèi)?yīng)贏了其他三支球隊(duì),由古典概型問題計(jì)算即可.

4支足球隊(duì)進(jìn)行單循環(huán)比賽總的比賽共有場(chǎng)比賽,比賽的所有結(jié)果共有種;

選項(xiàng)A,這6場(chǎng)比賽中若4支球隊(duì)優(yōu)先各贏一場(chǎng),則還有2場(chǎng)必然有2支或1支隊(duì)伍獲勝,那么所得分值不可能都一樣,故是不可能事件,正確;

選項(xiàng)B,其中6場(chǎng)比賽中,依次獲勝的可以是,此時(shí)3隊(duì)都獲得2分,并列第一名,正確;

選項(xiàng)C,在6場(chǎng)比賽中,從中選2支球隊(duì)并列第一名有種可能,若選中a,b,其中第一類ab,有a,b,c,d,a,ba,b,d,c,a,b兩種情況,同理第二類ba,也有兩種,故恰有兩支球隊(duì)并列第一名的概率為,錯(cuò)誤;

選項(xiàng)D,從4支球隊(duì)中選一支為第一名有4種可能;這一支球隊(duì)比賽的3場(chǎng)應(yīng)都贏,則另外3場(chǎng)的可能有種,故只有一支球隊(duì)名列第一名的概率為,正確.

故選:ABD

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在某校矩形的航天知識(shí)競(jìng)賽中,參與競(jìng)賽的文科生與理科生人數(shù)之比為1:3,且成績(jī)分布在范圍內(nèi),規(guī)定分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng),按文理科用分層抽樣的放發(fā)抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖.

(Ⅰ)填寫下面的列聯(lián)表,能否有超過95%的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文理科有關(guān)”;

(Ⅱ)將上述調(diào)查所得的頻率視為概率,現(xiàn)從參賽學(xué)生中,任意抽取3名學(xué)生,記“獲獎(jiǎng)”學(xué)生人數(shù)為,求的分布列及數(shù)學(xué)期望.

附表及公式:,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年春節(jié)期間,某超市準(zhǔn)備舉辦一次有獎(jiǎng)促銷活動(dòng),若顧客一次消費(fèi)達(dá)到400元?jiǎng)t可參加一次抽獎(jiǎng)活動(dòng),超市設(shè)計(jì)了兩種抽獎(jiǎng)方案.

方案一:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得60元的返金券,若抽到白球則獲得20元的返金券,且顧客有放回地抽取3次.

方案二:一個(gè)不透明的盒子中裝有30個(gè)質(zhì)地均勻且大小相同的小球,其中10個(gè)紅球,20個(gè)白球,攪拌均勻后,顧客從中隨機(jī)抽取一個(gè)球,若抽到紅球則顧客獲得80元的返金券,若抽到白球則未中獎(jiǎng),且顧客有放回地抽取3次.

(1)現(xiàn)有兩位顧客均獲得抽獎(jiǎng)機(jī)會(huì),且都按方案一抽獎(jiǎng),試求這兩位顧客均獲得180元返金券的概率;

(2)若某顧客獲得抽獎(jiǎng)機(jī)會(huì).

①試分別計(jì)算他選擇兩種抽獎(jiǎng)方案最終獲得返金券的數(shù)學(xué)期望;

②為了吸引顧客消費(fèi),讓顧客獲得更多金額的返金券,該超市應(yīng)選擇哪一種抽獎(jiǎng)方案進(jìn)行促銷活動(dòng)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測(cè)如下:

甲說:作品獲得一等獎(jiǎng)”; 乙說:作品獲得一等獎(jiǎng)”;

丙說:兩件作品未獲得一等獎(jiǎng)”; 丁說:作品獲得一等獎(jiǎng)”.

評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為(α為參數(shù)),直線C2的方程為,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系.

(1)求曲線C1和直線C2的極坐標(biāo)方程;

(2)若直線C2與曲線C1交于A,B兩點(diǎn),求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)為正整數(shù),記平面點(diǎn)集.問:平面內(nèi)最少要有多少條直線,它們的并集才能包含,但不含點(diǎn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的單調(diào)遞減的奇函數(shù),當(dāng)時(shí),.

(1)求的值;

(2)求的解析式;

(3)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】橢圓的離心率為,其左焦點(diǎn)到點(diǎn)的距離為,不過原點(diǎn)O的直線C交于A,B兩點(diǎn),且線段AB被直線OP平分.

1)求橢圓C的方程;

2)求k的值;

3)求面積取最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2 sin(x+)。

(1)若點(diǎn)P(1,-)在角的終邊上,求:cos和f(-)的值;

(2)若x [ ],求f(x)的值域。

查看答案和解析>>

同步練習(xí)冊(cè)答案