【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,,.給出下列四個結(jié)論:
①四棱錐為陽馬;
②直線與平面所成角為;
③當(dāng)時,異面直線與所成的角的余弦值為;
④當(dāng)三棱錐體積最大時,四棱錐的外接球的表面積為.
其中,所有正確結(jié)論的序號是______.
【答案】①③④
【解析】
對于①,由塹堵的性質(zhì)得,則可證平面,即四棱錐為陽馬;
對于②,可知為直線與平面所成角,通過分析②不正確;
對于③,可知為異面直線與所成的角(或補角),由余弦定理得其余弦值為;
對于④,三棱錐體積為,由基本不等式可知時,最大,故可將三棱柱補成長方體,則長方體的外接球與四棱錐的外接球為同一個球,從而可求出四棱錐的外接球的表面積.
對于①,因為在三棱柱中,平面,∴,又,∴平面,即四棱錐為陽馬;故①正確;
對于②,由①可知平面,∴為直線與平面所成角,
假如,則為等腰直角三角形,所以,這與在中矛盾;故②不正確;
對于③,當(dāng)時,,,,,
∵,∴為異面直線與所成的角(或補角),
在中,,故③正確;
對于④,三棱錐體積為,
當(dāng)且僅當(dāng)時,取“”,現(xiàn)將三棱柱補成長方體,
則長方體的外接球與四棱錐的外接球為同一個球,
所以球的直徑,所以,故④正確.
故答案為:①③④
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國全面二孩政策已于2016年1月1日起正式實施.國家統(tǒng)計局發(fā)布的數(shù)據(jù)顯示,從2012年到2017年,中國的人口自然增長率變化始終不大,在5‰上下波動(如圖).
為了了解年齡介于24歲至50歲之間的適孕夫妻對生育二孩的態(tài)度如何,統(tǒng)計部門按年齡分為9組,每組選取150對夫妻進行調(diào)查統(tǒng)計有生育二孩意愿的夫妻數(shù),得到下表:
年齡區(qū)間 | |||||||||
有意愿數(shù) | 80 | 81 | 87 | 86 | 84 | 83 | 83 | 70 | 66 |
(1)設(shè)每個年齡區(qū)間的中間值為,有意愿數(shù)為,求樣本數(shù)據(jù)的線性回歸直線方程,并求該模型的相關(guān)系數(shù)(結(jié)果保留兩位小數(shù));
(2)從,,,,這五個年齡段中各選出一對夫妻(能代表該年齡段超過半數(shù)夫妻的意愿)進一步調(diào)研,再從這5對夫妻中任選2對夫妻.求其中恰有一對不愿意生育二孩的夫妻的概率.
(參考數(shù)據(jù)和公式:,,,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) .
(Ⅰ)討論函數(shù)的單調(diào)性;
(Ⅱ)若函數(shù)的極大值點為,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓C:的左、右頂點分別為右焦點為,右準線l的方程為,過焦點F的直線與橢圓C相交于點A,B(不與點重合).
(1)求橢圓C的標準方程;
(2)當(dāng)直線AB的傾斜角為45°時,求弦AB的長;
(3)設(shè)直線交l于點M,求證:B,,M三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】拋物線的焦點為F ,已知點A ,B 為拋物線上的兩個動點,且滿足.過弦AB 的中點M 作拋物線準線的垂線MN ,垂足為N,則 的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的極大值為,其中為自然對數(shù)的底數(shù).
(1)求實數(shù)的值;
(2)若函數(shù),對任意,恒成立.
(i)求實數(shù)的取值范圍;
(ii)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點分別為橢圓的左右頂點和右焦點,過點的直線交橢圓于點.
(1)若,點與橢圓左準線的距離為,求橢圓的方程;
(2)已知直線的斜率是直線斜率的倍.
①求橢圓的離心率;
②若橢圓的焦距為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四棱錐P-ABCD的三視圖如下圖所示,E是側(cè)棱PC上的動點.
(1)求證:BD⊥AE
(2)若點E為PC的中點,求二面角D-AE-B的大小.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com