【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個面均為直角三角形的四面體.如圖在塹堵中,,.給出下列四個結(jié)論:

①四棱錐為陽馬;

②直線與平面所成角為;

③當(dāng)時,異面直線所成的角的余弦值為;

④當(dāng)三棱錐體積最大時,四棱錐的外接球的表面積為.

其中,所有正確結(jié)論的序號是______.

【答案】①③④

【解析】

對于①,由塹堵的性質(zhì)得,則可證平面,即四棱錐為陽馬;

對于②,可知為直線與平面所成角,通過分析②不正確;

對于③,可知為異面直線所成的角(或補角),由余弦定理得其余弦值為;

對于④,三棱錐體積為,由基本不等式可知時,最大,故可將三棱柱補成長方體,則長方體的外接球與四棱錐的外接球為同一個球,從而可求出四棱錐的外接球的表面積.

對于①,因為在三棱柱中,平面,∴,又,∴平面,即四棱錐為陽馬;故①正確;

對于②,由①可知平面,∴為直線與平面所成角,

假如,則為等腰直角三角形,所以,這與在矛盾;故②不正確;

對于③,當(dāng)時,,,,

,∴為異面直線所成的角(或補角),

中,,故③正確;

對于④,三棱錐體積為,

當(dāng)且僅當(dāng)時,取“”,現(xiàn)將三棱柱補成長方體

則長方體的外接球與四棱錐的外接球為同一個球,

所以球的直徑,所以,故④正確.

故答案為:①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國全面二孩政策已于201611日起正式實施.國家統(tǒng)計局發(fā)布的數(shù)據(jù)顯示,從2012年到2017年,中國的人口自然增長率變化始終不大,在5‰上下波動(如圖).

為了了解年齡介于24歲至50歲之間的適孕夫妻對生育二孩的態(tài)度如何,統(tǒng)計部門按年齡分為9組,每組選取150對夫妻進行調(diào)查統(tǒng)計有生育二孩意愿的夫妻數(shù),得到下表:

年齡區(qū)間

有意愿數(shù)

80

81

87

86

84

83

83

70

66

1)設(shè)每個年齡區(qū)間的中間值為,有意愿數(shù)為,求樣本數(shù)據(jù)的線性回歸直線方程,并求該模型的相關(guān)系數(shù)(結(jié)果保留兩位小數(shù));

2)從,,這五個年齡段中各選出一對夫妻(能代表該年齡段超過半數(shù)夫妻的意愿)進一步調(diào)研,再從這5對夫妻中任選2對夫妻.求其中恰有一對不愿意生育二孩的夫妻的概率.

(參考數(shù)據(jù)和公式:,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)若函數(shù)的極大值點為,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在無窮數(shù)列中,,且,記的前n項和為.

1)若,求的值;

2)若,求的值;

3)證明:中必有一項為13.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C的左、右頂點分別為右焦點為,右準線l的方程為,過焦點F的直線與橢圓C相交于點AB(不與點重合).

1)求橢圓C的標準方程;

2)當(dāng)直線AB的傾斜角為45°時,求弦AB的長;

3)設(shè)直線l于點M,求證:B,M三點共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋物線的焦點為F ,已知點A ,B 為拋物線上的兩個動點,且滿足.過弦AB 的中點M 作拋物線準線的垂線MN ,垂足為N,則 的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的極大值為,其中為自然對數(shù)的底數(shù).

1)求實數(shù)的值;

2)若函數(shù),對任意,恒成立.

i)求實數(shù)的取值范圍;

ii)證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,點分別為橢圓的左右頂點和右焦點,過點的直線交橢圓于點.

1)若,點與橢圓左準線的距離為,求橢圓的方程;

2)已知直線的斜率是直線斜率的倍.

①求橢圓的離心率;

②若橢圓的焦距為,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐PABCD的三視圖如下圖所示,E是側(cè)棱PC上的動點.

1)求證:BD⊥AE

2)若點EPC的中點,求二面角DAEB的大小.

查看答案和解析>>

同步練習(xí)冊答案