【題目】已知拋物線,且過拋物線焦點作直線交拋物線所得最短弦長為,過點作斜率存在的動直線與拋物線交于兩點.

1)求拋物線的方程;

2)若過點軸的垂線,則軸上是否存在一點,使得直線與直線的交點恒在一條直線上?若存在,求該點的坐標及該定直線的方程;若不存在,請說明理由.

【答案】1

2)存在定直線,此時

【解析】

1)設(shè)出直線方程,與拋物線方程聯(lián)立,結(jié)合拋物線的定義求出弦長的表達式,根據(jù)題意求出拋物線的方程;

2)設(shè),,根據(jù)三點共線,結(jié)合斜率公式,可得的關(guān)系,利用解方程組,求出直線與直線的交點的坐標,最后可以求出定直線,以及點坐標.

1)拋物線的焦點坐標為:,過該焦點的直線方程為:,與拋物線方程聯(lián)立得:設(shè)直線與拋物線的交點為:

,所以有,而由拋物線的定義可知:

,因為,所以當(dāng)時,有最小值,所以,所以拋物線方程為.

2)設(shè),,由三點共線,

直線的斜率,直線的方程為,

直線的方程為,設(shè)直線與直線的交點為,

聯(lián)立,,

,

當(dāng)時,

故存在定直線,此時.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從某小區(qū)抽取50戶居民進行月用電量調(diào)查,發(fā)現(xiàn)其用電量都在50350度之間,頻率分布直方圖如圖1.

A類用戶

B類用戶

9

7

7

0

6

8

6

5

1

7

8

9

9

8

2

8

5

6

7

8

8

7

1

0

9

7

8

9

2

1)求頻率分布直方圖中的值并估計這50戶用戶的平均用電量;(2)若將用電量在區(qū)間內(nèi)的用戶記為類用戶,標記為低用電家庭,用電量在區(qū)間內(nèi)的用戶記為類用戶,標記為高用電家庭,現(xiàn)對這兩類用戶進行問卷調(diào)查,讓其對供電服務(wù)進行打分,打分情況見莖葉圖2;若打分超過85分視為滿意,沒超過85分視為不滿意,請?zhí)顚懴旅媪新?lián)表,并根據(jù)列聯(lián)表判斷是否有的把握認為滿意度與用電量高低有關(guān)?

滿意

不滿意

合計

類用戶

類用戶

合計

附表及公式:

0.050

0.010

0.001

3.841

6.635

10.828

,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】經(jīng)銷商經(jīng)銷某種農(nóng)產(chǎn)品,在一個銷售季度內(nèi),每售出1t該產(chǎn)品獲利潤500元,未售出的產(chǎn)品,每1t虧損300.根據(jù)歷史資料,得到銷售季度內(nèi)市場需求量的頻率分布直圖,如右圖所示.經(jīng)銷商為下一個銷售季度購進了130t該農(nóng)產(chǎn)品.(單位:t,100≤≤150)表示下一個銷售季度內(nèi)的市場需求量,T(單位:)表示下一個銷售季度內(nèi)經(jīng)銷該農(nóng)產(chǎn)品的利潤.

)將T表示為的函數(shù);

)根據(jù)直方圖估計利潤T不少于57000元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求不等式的解集;

2)若不等式的解集包含[–11],求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1)當(dāng)時,求的單調(diào)區(qū)間;

2)當(dāng),討論的零點個數(shù);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種新產(chǎn)品,從產(chǎn)品中抽取100件作為樣本,測量這些產(chǎn)品的質(zhì)量指標值,由測量結(jié)果得到如圖所示的頻率分布直方圖.

1)用每組區(qū)間的中點值代表該組數(shù)據(jù),估算這批產(chǎn)品的樣本平均數(shù)和樣本方差的;

2)從指標值落在的產(chǎn)品中隨機抽取2件做進一步檢測,設(shè)抽取的產(chǎn)品的指標在的件數(shù)為,求的分布列和數(shù)學(xué)期望;

3)由頻率分布直方圖可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,近似為樣本平均值,近似為樣本方差,若產(chǎn)品質(zhì)量指標值大于236.6,則產(chǎn)品不合格,該廠生產(chǎn)10萬件該產(chǎn)品,求這批產(chǎn)品不合格的件數(shù).

參考數(shù)據(jù):,,,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,、是兩個小區(qū)所在地,、到一條公路的垂直距離分別為,兩端之間的距離為.

1)某移動公司將在之間找一點,在處建造一個信號塔,使得、的張角與、的張角相等,試確定點的位置.

2)環(huán)保部門將在之間找一點,在處建造一個垃圾處理廠,使得、所張角最大,試確定點的位置.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

1)求橢圓的離心率;

2)設(shè)動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)中國生態(tài)環(huán)境部公布的2017年、2018年長江流域水質(zhì)情況監(jiān)測數(shù)據(jù),得到如下餅圖:

則下列說法錯誤的是(

A.2018年的水質(zhì)情況好于2017年的水質(zhì)情況

B.2018年與2017年相比較,Ⅰ、Ⅱ類水質(zhì)的占比明顯增加

C.2018年與2017年相比較,占比減小幅度最大的是Ⅳ類水質(zhì)

D.2018年Ⅰ、Ⅱ類水質(zhì)的占比超過

查看答案和解析>>

同步練習(xí)冊答案