【題目】如圖,在直三棱柱中,已知,,,.是線(xiàn)段的中點(diǎn).
(1)求直線(xiàn)與平面所成角的正弦值;
(2)求二面角的大小的余弦值.
【答案】(1)(2)
【解析】
試題(1)利用空間向量研究線(xiàn)面角,首先建立恰當(dāng)空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組求面的法向量,最后利用向量數(shù)量積求夾角余弦值的絕對(duì)值,也是線(xiàn)面角的正弦值(2)利用空間向量研究二面角,首先建立恰當(dāng)空間直角坐標(biāo)系,設(shè)立各點(diǎn)坐標(biāo),利用方程組求兩個(gè)平面的法向量,最后利用向量數(shù)量積求夾角余弦值,根據(jù)圖形確定二面角的大小的余弦值與夾角余弦值之間關(guān)系.
試題解析:因?yàn)樵谥比庵?/span>中,,所以分別以、、所在的直線(xiàn)為軸、軸、軸,建立空間直角坐標(biāo)系,
則,
因?yàn)?/span>是的中點(diǎn),所以,
(1)因?yàn)?/span>,設(shè)平面的法向量,
則,即,取,
所以平面的法向量,而,
所以,
所以直線(xiàn)與平面所成角的正弦值為;
(2),,設(shè)平面的法向量,
則,即,取,平面的法向量,
所以,
二面角的大小的余弦值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著我國(guó)經(jīng)濟(jì)的發(fā)展,居民收入逐年增長(zhǎng).某地區(qū)2014年至2018年農(nóng)村居民家庭人均純收入(單位:千元)的數(shù)據(jù)如下表:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代號(hào) | 1 | 2 | 3 | 4 | 5 |
人均純收入 | 5 | 4 | 7 | 8 | 10 |
(1)求關(guān)于的線(xiàn)性回歸方程;
(2)利用(1)中的回歸方程,分析2014年至2018年該地區(qū)農(nóng)村居民家庭人均純收入的變化情況,并預(yù)測(cè)2019年該地區(qū)農(nóng)村居民家庭人均純收入為多少?
附:回歸直線(xiàn)的斜率和截距的最小二乘估計(jì)公式分別為,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),其短半軸長(zhǎng)為,一個(gè)焦點(diǎn)坐標(biāo)為,點(diǎn)在橢圓上,點(diǎn)在直線(xiàn)上的點(diǎn),且.
證明:直線(xiàn)與圓相切;
求面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的幾何體中,是等邊三角形,四邊形是等腰梯形,,,平面平面.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,且橢圓短軸的一個(gè)頂點(diǎn)到左焦點(diǎn)的距離等于.
(1)求橢圓的方程;
(2)設(shè)經(jīng)過(guò)點(diǎn)的直線(xiàn)交橢圓于兩點(diǎn),弦的中垂線(xiàn)交軸于點(diǎn).
①求實(shí)數(shù)的取值范圍;
②若,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)經(jīng)典《數(shù)書(shū)九章》中,將底面為矩形且有一條側(cè)棱與底面垂直的四棱錐稱(chēng)為“陽(yáng)馬”,將四個(gè)面都為直角三角形的四面體稱(chēng)之為“鱉臑”.在如圖所示的陽(yáng)馬中,底面ABCD是矩形.平面,,,以的中點(diǎn)O為球心,AC為直徑的球面交PD于M(異于點(diǎn)D),交PC于N(異于點(diǎn)C).
(1)證明:平面,并判斷四面體MCDA是否是鱉臑,若是,寫(xiě)出它每個(gè)面的直角(只需寫(xiě)出結(jié)論);若不是,請(qǐng)說(shuō)明理由;
(2)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時(shí),函數(shù)在區(qū)間的最小值為,試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)若,求函數(shù)在處的切線(xiàn)方程;
(2)若函數(shù)在和處有兩個(gè)極值點(diǎn),其中,.
(i)求實(shí)數(shù)的取值范圍;
(ii)若(e為自然對(duì)數(shù)的底數(shù)),求的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com