【題目】已知向量.

1)求函數(shù)fx)的單調(diào)增區(qū)間.

2)若方程上有解,求實數(shù)m的取值范圍.

3)設(shè),已知區(qū)間[a,b]abRab)滿足:ygx)在[a,b]上至少含有100個零點,在所有滿足上述條件的[a,b]中求ba的最小值.

【答案】1;(2;(3.

【解析】

1)根據(jù)數(shù)量積運算和倍角公式、輔助角公式,求出.令,求出的取值范圍,即得函數(shù)的單調(diào)遞增區(qū)間;

2)由(1)知.時,求得.,則方程上有解,即方程上有解,即求實數(shù)的取值范圍;

3)求出函數(shù)的解析式,令,得零點的值,可得零點間隔依次為.最小,則均為零點,結(jié)合函數(shù)上至少含有100個零點,求得的最小值.

1,

.

,得,

函數(shù)的單調(diào)遞增區(qū)間為.

2)由(1)知.

,即.

,則.

方程上有解,即方程上有解.

上單調(diào)遞增,在上單調(diào)遞減,

,即.

實數(shù)的取值范圍為.

3.

,得,

.

函數(shù)的零點間隔依次為.

最小,則均為零點.

函數(shù)上至少含有100個零點,

.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,ABCD,AC,AB=2BC=2,ACFB.

(1)求證:AC⊥平面FBC;

(2)求四面體FBCD的體積;

(3)線段AC上是否存在點M,使得EA∥平面FDM?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).

(1)求直線的直角坐標方程和曲線的普通方程;

(2)設(shè)直線與曲線交于兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】[選修4-4:坐標系與參數(shù)方程]

在平面直角坐標系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.

(Ⅰ)求曲線的直角坐標方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于 兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】201911日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內(nèi)容如下:

級數(shù)

一級

二級

三級

每月應(yīng)納稅所得額元(含稅)

稅率

3

10

20

現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應(yīng)交納的個稅金額為(

A.1800B.1000C.790D.560

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

(1)求第四小組的頻率,補全頻率分布直方圖,并求樣本數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)和方差,(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);

(2)從被抽取的數(shù)學成績是分以上(包括分)的學生中選兩人,求他們在同一分數(shù)段的概率;

(3)假設(shè)從全市參加高一年級期末考試的學生中,任意抽取個學生,設(shè)這四個學生中數(shù)學成績?yōu)?/span>分以上(包括分)的人數(shù)為(以該校學生的成績的頻率估計概率),求的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,底面為平行四邊形, , , 底面

(1)證明:平面平面;

(2)若二面角的大小為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列說法正確的是()

A. ,,則”是真命題

B. 在同一坐標系中,函數(shù)的圖象關(guān)于軸對稱.

C. 命題“,使得”的否定是“,都有

D. ,“”是“”的充分不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足:a2a3=45,a1a4=14.

(1)求數(shù)列{an}的通項公式;

(2)通過公式bn構(gòu)造一個新的數(shù)列{bn}.若{bn}也是等差數(shù)列,求非零常數(shù)c;

(3)對于(2)中得到的數(shù)列{bn},求f(n)= (n∈N*)的最大值.

查看答案和解析>>

同步練習冊答案