【題目】已知向量.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間.
(2)若方程上有解,求實數(shù)m的取值范圍.
(3)設(shè),已知區(qū)間[a,b](a,b∈R且a<b)滿足:y=g(x)在[a,b]上至少含有100個零點,在所有滿足上述條件的[a,b]中求b﹣a的最小值.
【答案】(1);(2);(3).
【解析】
(1)根據(jù)數(shù)量積運算和倍角公式、輔助角公式,求出.令,求出的取值范圍,即得函數(shù)的單調(diào)遞增區(qū)間;
(2)由(1)知.當時,求得.令,則方程在上有解,即方程在上有解,即求實數(shù)的取值范圍;
(3)求出函數(shù)的解析式,令,得零點的值,可得零點間隔依次為和.若最小,則均為零點,結(jié)合函數(shù)在上至少含有100個零點,求得的最小值.
(1),
.
令,得,
函數(shù)的單調(diào)遞增區(qū)間為.
(2)由(1)知.
,即.
令,則.
方程在上有解,即方程在上有解.
又在上單調(diào)遞增,在上單調(diào)遞減,
,即.
實數(shù)的取值范圍為.
(3).
令,得或,
或.
函數(shù)的零點間隔依次為和.
若最小,則均為零點.
函數(shù)在上至少含有100個零點,
.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的幾何體中,面CDEF為正方形,面ABCD為等腰梯形,AB∥CD,AC=,AB=2BC=2,AC⊥FB.
(1)求證:AC⊥平面FBC;
(2)求四面體FBCD的體積;
(3)線段AC上是否存在點M,使得EA∥平面FDM?證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
以平面直角坐標系的原點為極點, 軸的正半軸為極軸建立極坐標系,已知點的直角坐標為,若直線的極坐標方程為,曲線的參數(shù)方程是,(為參數(shù)).
(1)求直線的直角坐標方程和曲線的普通方程;
(2)設(shè)直線與曲線交于兩點,求.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】[選修4-4:坐標系與參數(shù)方程]
在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),在以直角坐標系的原點為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(Ⅰ)求曲線的直角坐標方程和直線的普通方程;
(Ⅱ)若直線與曲線相交于, 兩點,求的面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2019年1月1日起我國實施了個人所得稅的新政策,其政策的主要內(nèi)容包括:(1)個稅起征點為5000元;(2)每月應(yīng)納稅所得額(含稅)=收入-個稅起征點-專項附加扣除;(3)專項附加扣除包括:①贍養(yǎng)老人費用,②子女教育費用,③繼續(xù)教育費用,④大病醫(yī)療費用等,其中前兩項的扣除標準為:①贍養(yǎng)老人費用:每月扣除2000元,②子女教育費用:每個子女每月扣除1000元,新的個稅政策的稅率表部分內(nèi)容如下:
級數(shù) | 一級 | 二級 | 三級 |
每月應(yīng)納稅所得額元(含稅) | |||
稅率 | 3 | 10 | 20 |
現(xiàn)有李某月收入為18000元,膝下有一名子女在讀高三,需贍養(yǎng)老人,除此之外無其它專項附加扣除,則他該月應(yīng)交納的個稅金額為( )
A.1800B.1000C.790D.560
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校從參加高一年級期末考試的學生中抽出60名學生,將其數(shù)學成績(均為整數(shù))分成六段后,畫出如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
(1)求第四小組的頻率,補全頻率分布直方圖,并求樣本數(shù)據(jù)的眾數(shù),中位數(shù),平均數(shù)和方差,(同一組中的數(shù)據(jù)用該區(qū)間的中點值作代表);
(2)從被抽取的數(shù)學成績是分以上(包括分)的學生中選兩人,求他們在同一分數(shù)段的概率;
(3)假設(shè)從全市參加高一年級期末考試的學生中,任意抽取個學生,設(shè)這四個學生中數(shù)學成績?yōu)?/span>分以上(包括分)的人數(shù)為(以該校學生的成績的頻率估計概率),求的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是()
A. “,若,則且”是真命題
B. 在同一坐標系中,函數(shù)與的圖象關(guān)于軸對稱.
C. 命題“,使得”的否定是“,都有”
D. ,“”是“”的充分不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列{an}中,公差d>0,其前n項和為Sn,且滿足:a2a3=45,a1+a4=14.
(1)求數(shù)列{an}的通項公式;
(2)通過公式bn=構(gòu)造一個新的數(shù)列{bn}.若{bn}也是等差數(shù)列,求非零常數(shù)c;
(3)對于(2)中得到的數(shù)列{bn},求f(n)= (n∈N*)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com