【題目】某地政府擬在該地一水庫上建造一座水電站,用泄流水量發(fā)電.下圖是根據(jù)該水庫歷年的日泄流量的水文資料畫成的日泄流量X(單位:萬立方米)的頻率分布直方圖(不完整),已知,歷年中日泄流量在區(qū)間[30,60)
的年平均天數(shù)為156,一年按364天計.
(Ⅰ)請把頻率分布直方圖補充完整;
(Ⅱ)該水電站希望安裝的發(fā)電機盡可能運行,但每30萬立方米的日泄流量才夠運行一臺發(fā)電機,如時才夠運行兩臺發(fā)電機,若運行一臺發(fā)電機,每天可獲利潤為4000元,若不運行,則該臺發(fā)電機每天虧損500元,以各段的頻率作為相應段的概率,以水電站日利潤的期望值為決策依據(jù),問:為使水電站日利潤的期望值最大,該水電站應安裝多少臺發(fā)電機?
【答案】(Ⅰ)見解析;(Ⅱ)要使水電站日利潤的期望值最大,該水電站應安裝3臺發(fā)電機.
【解析】試題分析:(Ⅰ)可利用頻率分布直方圖的性質,補全圖像;
(Ⅱ)分別計算安裝1臺,2臺,3臺的日利潤的期望值,然后進行比較.
試題解析:
(Ⅰ)在區(qū)間[30,60)的頻率為
,
設在區(qū)間[0,30)上, ,
則,
解得,
補充頻率分布直方圖如圖;
(Ⅱ)記水電站日利潤為Y元.由(Ⅰ)知:不能運行發(fā)電機的概率為,恰好運行一臺發(fā)電機的概率為,恰好運行二臺發(fā)電機的概率為,恰好運行三臺發(fā)電機的概率為,
①若安裝1臺發(fā)電機,則Y的值為-500,4000,其分布列為
Y | -500 | 4000 |
P |
E(Y)=;
②若安裝2臺發(fā)電機,則Y的值為-1000,3500,8000,其分布列為
Y | -1000 | 3500 | 8000 |
P |
E(Y)=;
③若安裝3臺發(fā)電機,則Y的值為-1500,3000,7500,12000,其分布列為
Y | -1500 | 3000 | 7500 | 12000 |
P |
E(Y)=;
∵
∴要使水電站日利潤的期望值最大,該水電站應安裝3臺發(fā)電機.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(1)若在上存在極值點,求的取值范圍;
(2)設, ,若存在最大值,記為,則當時, 是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了研究一種昆蟲的產卵數(shù)和溫度是否有關,現(xiàn)收集了7組觀測數(shù)據(jù)列于下表中,并作出了散點圖,發(fā)現(xiàn)樣本點并沒有分布在某個帶狀區(qū)域內,兩個變量并不呈線性相關關系,現(xiàn)分別用模型①:與模型②:作為產卵數(shù)和溫度的回歸方程來建立兩個變量之間的關系.
溫度 | 20 | 22 | 24 | 26 | 28 | 30 | 32 |
產卵數(shù)/個 | 6 | 10 | 21 | 24 | 64 | 113 | 322 |
400 | 484 | 576 | 676 | 784 | 900 | 1024 | |
1.79 | 2.30 | 3.04 | 3.18 | 4.16 | 4.73 | 5.77 |
26 | 692 | 80 | 3.57 |
1157.54 | 0.43 | 0.32 | 0.00012 |
其中,
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為: , .
(1)在答題卡中分別畫出關于的散點圖、關于的散點圖,根據(jù)散點圖判斷哪一個模型更適宜作為回歸方程類型?(給出判斷即可,不必說明理由).
(2)根據(jù)表中數(shù)據(jù),分別建立兩個模型下建立關于的回歸方程;并在兩個模型下分別估計溫度為時的產卵數(shù).(與估計值均精確到小數(shù)點后兩位)(參考數(shù)據(jù): , , )
(3)若模型①、②的相關指數(shù)計算得分分別為, ,請根據(jù)相關指數(shù)判斷哪個模型的擬合效果更好.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中錯誤的是( )
A. 如果平面外的直線不平行于平面,則平面內不存在與平行的直線
B. 如果平面平面,平面平面, ,那么直線平面
C. 如果平面平面,那么平面內所有直線都垂直于平面
D. 一條直線與兩個平行平面中的一個平面相交,則必與另一個平面相交
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)在如圖所示的五面體中,面為直角梯形, ,平面平面, , 是邊長為2的正三角形.
(1)證明: 平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著手機的發(fā)展,“微信”越來越成為人們交流的一種方式.某機構對“使用微信交流”的態(tài)度進行調查,隨機抽取了50人,他們年齡的頻數(shù)分布及對“使用微信交流”贊成人數(shù)如下表.
年齡(單位:歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數(shù) | 5 | 10 | 12 | 7 | 2 | 1 |
(Ⅰ)若以“年齡45歲為分界點”,由以上統(tǒng)計數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有99%的把握認為“使用微信交流”的態(tài)度與人的年齡有關;
年齡不低于45歲的人數(shù) | 年齡低于45歲的人數(shù) | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若從年齡在[25,35)和[55,65)的被調查人中按照分層抽樣的方法選取6人進行追蹤調查,并給予其中3人“紅包”獎勵,求3人中至少有1人年齡在[55,65)的概率.
參考數(shù)據(jù)如下:
附臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
的觀測值: (其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),在區(qū)間內任取兩個實數(shù),且,若不等式恒成立,則實數(shù)的取值范圍為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在某次水下科研考察活動中,需要潛水員潛入水深為60米的水底進行作業(yè),根據(jù)已往經驗,潛水員下潛的平均速度為(米/單位時間),每單位時間的用氧量為(升),在水底作業(yè)10個單位時間,每單位時間用氧量為(升),返回水面的平均速度為(米/單位時間),每單位時間用氧量為(升),記該潛水員在此次考察活動中的總用氧量為(升).
(1)求關于的函數(shù)關系式;
(2)若,求當下潛速度取什么值時,總用氧量最少.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com