【題目】已知函數(shù),其中.

(1)若上存在極值點(diǎn),求的取值范圍;

(2)設(shè) ,若存在最大值,記為,則當(dāng)時(shí), 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.

【答案】(1);(2)存在,且存在最大值為

【解析】試題分析:

(1)函數(shù)存在極值點(diǎn),將問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)有根,且不為重根,據(jù)此分離系數(shù),結(jié)合對(duì)勾函數(shù)的性質(zhì)和函數(shù)的定義域求解實(shí)數(shù) 的取值范圍即可;

(2)分類(lèi)討論,當(dāng) 時(shí), 不存在最大值,

當(dāng) 時(shí),由根與系數(shù)的關(guān)系求得 的解析式,結(jié)合 的式子構(gòu)造新函數(shù) ,利用新函數(shù)的性質(zhì)結(jié)合題意即可求得 的最大值.

解:

(1), .

由題意,得,在上有根(不為重根).

上有解.

上單調(diào)遞增,得.

檢驗(yàn):當(dāng)時(shí), 上存在極值點(diǎn).

.

(2)若,∵上滿(mǎn)足,

上單調(diào)遞減,∴.

不存在最大值.

.

∴方程有兩個(gè)不相等的正實(shí)數(shù)根,令其為,且不妨設(shè)

.

上單調(diào)遞減,在上調(diào)遞增,在上單調(diào)遞減,

對(duì),有;對(duì),有,

.

.

, 代入上式,消去

,∴, .

據(jù)上單調(diào)遞增,得.

設(shè), .

, .

,即上單調(diào)遞增.

存在最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷(xiāo)售額(萬(wàn)元)數(shù)據(jù)如下:

超市

A

B

C

D

E

F

G

廣告費(fèi)支出

1

2

4

6

11

13

19

銷(xiāo)售額

19

32

40

44

52

53

54

1)若用線(xiàn)性回歸模型擬合的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;

2)用二次函數(shù)回歸模型擬合的關(guān)系,可得回歸方程:,

經(jīng)計(jì)算二次函數(shù)回歸模型和線(xiàn)性回歸模型的分別約為,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷(xiāo)售額.

參數(shù)數(shù)據(jù)及公式:,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):

907 966 191 925 271 932 812 458 569 683

431 257 393 027 556 488 730 113 537 989

據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3,每次抽取1,將抽取的卡片上的數(shù)字依次記為a,b,c.求:

(1)“抽取的卡片上的數(shù)字滿(mǎn)足abc”的概率;

(2)“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)甲、乙、丙3個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18.現(xiàn)采用分層抽樣的方法從這3個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員組隊(duì)參加比賽.

(1)求應(yīng)從這3個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員的人數(shù).

(2)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為A1,A2,A3,A4A5,A6.現(xiàn)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2人參加雙打比賽.

①用所給編號(hào)列出所有可能的結(jié)果;

②設(shè)事件A為“編號(hào)為A5A62名運(yùn)動(dòng)員中至少有1人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢?cái)產(chǎn)損失,適逢暑假,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶(hù)居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成, , , , 五組,并作出如下頻率分布直方圖(圖1):

(Ⅰ)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶(hù)居民捐款情況如右下表格,在圖2表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?

(Ⅱ)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣方法每次抽取1戶(hù)居民,抽取3次,記被抽取的3戶(hù)居民中自身經(jīng)濟(jì)損失超過(guò)4000元的人數(shù)為. 若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.

附:臨界值表

0.10

0.05

0.025

2.706

3.841

5.024

隨機(jī)量變

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是__________.(寫(xiě)出所有正確命題的序號(hào))

①已知,“”是“”的充要條件;

②已知平面向量,“”是“”的必要不充分條件;

③已知,“”是“”的充分不必要條件;

④命題:“,使”的否定為:“,都有

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一張半徑為4的圓形紙片的圓心為, 是圓內(nèi)一個(gè)定點(diǎn),且 是圓上一個(gè)動(dòng)點(diǎn),把紙片折疊使得重合,然后抹平紙片,折痕為,設(shè)與半徑的交點(diǎn)為,當(dāng)在圓上運(yùn)動(dòng)時(shí),則點(diǎn)的軌跡為曲線(xiàn),以所在直線(xiàn)為軸, 的中垂線(xiàn)為軸建立平面直角坐標(biāo)系,如圖.

(1)求曲線(xiàn)的方程;

(2)曲線(xiàn)軸的交點(diǎn)為, 左側(cè)),與軸不重合的動(dòng)直線(xiàn)過(guò)點(diǎn)且與交于兩點(diǎn)(其中軸上方),設(shè)直線(xiàn)、交于點(diǎn),求證:動(dòng)點(diǎn)恒在定直線(xiàn)上,并求的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地政府?dāng)M在該地一水庫(kù)上建造一座水電站,用泄流水量發(fā)電.下圖是根據(jù)該水庫(kù)歷年的日泄流量的水文資料畫(huà)成的日泄流量X(單位:萬(wàn)立方米)的頻率分布直方圖(不完整),已知,歷年中日泄流量在區(qū)間[30,60)

的年平均天數(shù)為156,一年按364天計(jì).

(Ⅰ)請(qǐng)把頻率分布直方圖補(bǔ)充完整;

(Ⅱ)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬(wàn)立方米的日泄流量才夠運(yùn)行一臺(tái)發(fā)電機(jī),如時(shí)才夠運(yùn)行兩臺(tái)發(fā)電機(jī),若運(yùn)行一臺(tái)發(fā)電機(jī),每天可獲利潤(rùn)為4000元,若不運(yùn)行,則該臺(tái)發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤(rùn)的期望值為決策依據(jù),問(wèn):為使水電站日利潤(rùn)的期望值最大,該水電站應(yīng)安裝多少臺(tái)發(fā)電機(jī)?

查看答案和解析>>

同步練習(xí)冊(cè)答案