【題目】已知函數(shù),其中.
(1)若在上存在極值點(diǎn),求的取值范圍;
(2)設(shè), ,若存在最大值,記為,則當(dāng)時(shí), 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)存在,且存在最大值為.
【解析】試題分析:
(1)函數(shù)存在極值點(diǎn),將問(wèn)題轉(zhuǎn)化為導(dǎo)函數(shù)有根,且不為重根,據(jù)此分離系數(shù),結(jié)合對(duì)勾函數(shù)的性質(zhì)和函數(shù)的定義域求解實(shí)數(shù) 的取值范圍即可;
(2)分類(lèi)討論,當(dāng) 時(shí), 不存在最大值,
當(dāng) 時(shí),由根與系數(shù)的關(guān)系求得 的解析式,結(jié)合 的式子構(gòu)造新函數(shù) ,利用新函數(shù)的性質(zhì)結(jié)合題意即可求得 的最大值.
解:
(1), .
由題意,得,在上有根(不為重根).
即在上有解.
由在上單調(diào)遞增,得.
檢驗(yàn):當(dāng)時(shí), 在上存在極值點(diǎn).
∴.
(2)若,∵在上滿(mǎn)足,
∴在上單調(diào)遞減,∴.
∴不存在最大值.
則.
∴方程有兩個(gè)不相等的正實(shí)數(shù)根,令其為,且不妨設(shè)
則.
在上單調(diào)遞減,在上調(diào)遞增,在上單調(diào)遞減,
對(duì),有;對(duì),有,
∴.
∴
.
將, 代入上式,消去得
∵,∴, .
據(jù)在上單調(diào)遞增,得.
設(shè), .
, .
∴,即在上單調(diào)遞增.
∴
∴存在最大值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市春節(jié)期間7家超市的廣告費(fèi)支出(萬(wàn)元)和銷(xiāo)售額(萬(wàn)元)數(shù)據(jù)如下:
超市 | A | B | C | D | E | F | G |
廣告費(fèi)支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷(xiāo)售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線(xiàn)性回歸模型擬合與的關(guān)系,求關(guān)于的線(xiàn)性回歸方程;
(2)用二次函數(shù)回歸模型擬合與的關(guān)系,可得回歸方程:,
經(jīng)計(jì)算二次函數(shù)回歸模型和線(xiàn)性回歸模型的分別約為和,請(qǐng)用說(shuō)明選擇哪個(gè)回歸模型更合適,并用此模型預(yù)測(cè)超市廣告費(fèi)支出為3萬(wàn)元時(shí)的銷(xiāo)售額.
參數(shù)數(shù)據(jù)及公式:,,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某運(yùn)動(dòng)員每次投籃命中的概率低于,現(xiàn)采用隨機(jī)模擬的方法估計(jì)該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率:先由計(jì)算器產(chǎn)生0到9之間取整數(shù)值的隨機(jī)數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個(gè)隨機(jī)數(shù)為一組,代表三次投籃的結(jié)果,經(jīng)隨機(jī)模擬產(chǎn)生了如下20組隨機(jī)數(shù):
907 966 191 925 271 932 812 458 569 683
431 257 393 027 556 488 730 113 537 989
據(jù)此估計(jì),該運(yùn)動(dòng)員三次投籃恰有兩次命中的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)盒子里裝有三張卡片,分別標(biāo)記有數(shù)字1,2,3,這三張卡片除標(biāo)記的數(shù)字外完全相同.隨機(jī)有放回地抽取3次,每次抽取1張,將抽取的卡片上的數(shù)字依次記為a,b,c.求:
(1)“抽取的卡片上的數(shù)字滿(mǎn)足a+b=c”的概率;
(2)“抽取的卡片上的數(shù)字a,b,c不完全相同”的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)甲、乙、丙3個(gè)乒乓球協(xié)會(huì)的運(yùn)動(dòng)員人數(shù)分別為27,9,18.現(xiàn)采用分層抽樣的方法從這3個(gè)協(xié)會(huì)中抽取6名運(yùn)動(dòng)員組隊(duì)參加比賽.
(1)求應(yīng)從這3個(gè)協(xié)會(huì)中分別抽取的運(yùn)動(dòng)員的人數(shù).
(2)將抽取的6名運(yùn)動(dòng)員進(jìn)行編號(hào),編號(hào)分別為A1,A2,A3,A4,A5,A6.現(xiàn)從這6名運(yùn)動(dòng)員中隨機(jī)抽取2人參加雙打比賽.
①用所給編號(hào)列出所有可能的結(jié)果;
②設(shè)事件A為“編號(hào)為A5和A6的2名運(yùn)動(dòng)員中至少有1人被抽到”,求事件A發(fā)生的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2015年7月9日21時(shí)15分,臺(tái)風(fēng)“蓮花”在我國(guó)廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當(dāng)?shù)厝嗣裨斐闪司薮蟮呢?cái)產(chǎn)損失,適逢暑假,小張調(diào)查了當(dāng)?shù)啬承^(qū)的100戶(hù)居民由于臺(tái)風(fēng)造成的經(jīng)濟(jì)損失,將收集的數(shù)據(jù)分成, , , , 五組,并作出如下頻率分布直方圖(圖1):
(Ⅰ)臺(tái)風(fēng)后居委會(huì)號(hào)召小區(qū)居民為臺(tái)風(fēng)重災(zāi)區(qū)捐款,小張調(diào)查的100戶(hù)居民捐款情況如右下表格,在圖2表格空白處填寫(xiě)正確數(shù)字,并說(shuō)明是否有以上的把握認(rèn)為捐款數(shù)額多于或少于500元和自身經(jīng)濟(jì)損失是否到4000元有關(guān)?
(Ⅱ)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量受災(zāi)居民中,采用隨機(jī)抽樣方法每次抽取1戶(hù)居民,抽取3次,記被抽取的3戶(hù)居民中自身經(jīng)濟(jì)損失超過(guò)4000元的人數(shù)為. 若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望和方差.
附:臨界值表
0.10 | 0.05 | 0.025 | |
| 2.706 | 3.841 | 5.024 |
隨機(jī)量變
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題正確的是__________.(寫(xiě)出所有正確命題的序號(hào))
①已知,“且”是“”的充要條件;
②已知平面向量,“且”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一張半徑為4的圓形紙片的圓心為, 是圓內(nèi)一個(gè)定點(diǎn),且, 是圓上一個(gè)動(dòng)點(diǎn),把紙片折疊使得與重合,然后抹平紙片,折痕為,設(shè)與半徑的交點(diǎn)為,當(dāng)在圓上運(yùn)動(dòng)時(shí),則點(diǎn)的軌跡為曲線(xiàn),以所在直線(xiàn)為軸, 的中垂線(xiàn)為軸建立平面直角坐標(biāo)系,如圖.
(1)求曲線(xiàn)的方程;
(2)曲線(xiàn)與軸的交點(diǎn)為, (在左側(cè)),與軸不重合的動(dòng)直線(xiàn)過(guò)點(diǎn)且與交于、兩點(diǎn)(其中在軸上方),設(shè)直線(xiàn)、交于點(diǎn),求證:動(dòng)點(diǎn)恒在定直線(xiàn)上,并求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地政府?dāng)M在該地一水庫(kù)上建造一座水電站,用泄流水量發(fā)電.下圖是根據(jù)該水庫(kù)歷年的日泄流量的水文資料畫(huà)成的日泄流量X(單位:萬(wàn)立方米)的頻率分布直方圖(不完整),已知,歷年中日泄流量在區(qū)間[30,60)
的年平均天數(shù)為156,一年按364天計(jì).
(Ⅰ)請(qǐng)把頻率分布直方圖補(bǔ)充完整;
(Ⅱ)該水電站希望安裝的發(fā)電機(jī)盡可能運(yùn)行,但每30萬(wàn)立方米的日泄流量才夠運(yùn)行一臺(tái)發(fā)電機(jī),如時(shí)才夠運(yùn)行兩臺(tái)發(fā)電機(jī),若運(yùn)行一臺(tái)發(fā)電機(jī),每天可獲利潤(rùn)為4000元,若不運(yùn)行,則該臺(tái)發(fā)電機(jī)每天虧損500元,以各段的頻率作為相應(yīng)段的概率,以水電站日利潤(rùn)的期望值為決策依據(jù),問(wèn):為使水電站日利潤(rùn)的期望值最大,該水電站應(yīng)安裝多少臺(tái)發(fā)電機(jī)?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com