如圖,是正方形所在平面外一點(diǎn),且,,若、分別是、的中點(diǎn).
(1)求證:;
(2)求點(diǎn)到平面的距離.
(1)證明見(jiàn)解析;(2).
解析試題分析:(1)根據(jù)條件,,為坐標(biāo)軸建立空間直角坐標(biāo)系,然后得到相關(guān)點(diǎn)的坐標(biāo),通過(guò)計(jì)算,從而使問(wèn)題得證;(2)設(shè)為平面的一個(gè)法向量,利用與求得法向量,然后通過(guò)利用公式可求得點(diǎn)到平面的距離.
試題解析:如圖建系,
則,則.
(1),
,.
(2)設(shè)為平面的一個(gè)法向量,
由,
取,則,,,
,點(diǎn)到平面的距離為.
考點(diǎn):1、空間向量的應(yīng)用;2、直線與平面垂直關(guān)系;3、點(diǎn)到平面的距離.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點(diǎn).沿直線BD將△BCD翻折成△BCD,使得平面BCD平面ABD.
(1)求證:C'D平面ABD;
(2)求直線BD與平面BEC'所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱錐S-ABCD中,ABCD為矩形,SD⊥AD,且SD⊥AB,AD=a(a>0),AB=2AD,SD=AD,E為CD上一點(diǎn),且CE=3DE.
(1)求證:AE⊥平面SBD.
(2)M,N分別為線段SB,CD上的點(diǎn),是否存在M,N,使MN⊥CD且MN⊥SB,若存在,確定M,N的位置;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
)如圖所示,在三棱錐P-ABC中,AB=BC=,平面PAC⊥平面ABC,PD⊥AC于點(diǎn)D,AD=1,CD=3,PD=.
(1)證明:△PBC為直角三角形;
(2)求直線AP與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在長(zhǎng)方體ABCDA1B1C1D1中,已知AB=4,AD=3,AA1=2,E,F分別是棱AB,BC上的點(diǎn),且EB=FB=1.
(1)求異面直線EC1與FD1所成角的余弦值;
(2)試在面A1B1C1D1上確定一點(diǎn)G,使DG⊥平面D1EF.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,AB=AA1=.
(1)證明:A1C⊥平面BB1D1D;
(2)求平面OCB1與平面BB1D1D的夾角θ的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,O為AC與BD的交點(diǎn),E為PB上任意一點(diǎn).
(1)證明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,并且二面角B-AE-C的大小為45°,求PD∶AD的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,平面PAC⊥平面ABCD,且PA⊥AC,PA=AD=2.四邊形ABCD滿足BC∥AD,AB⊥AD,AB=BC=1.點(diǎn)E,F分別為側(cè)棱PB,PC上的點(diǎn),且=λ.
(1)求證:EF∥平面PAD.
(2)當(dāng)λ=時(shí),求異面直線BF與CD所成角的余弦值;
(3)是否存在實(shí)數(shù)λ,使得平面AFD⊥平面PCD?若存在,試求出λ的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖(1),等腰直角三角形的底邊,點(diǎn)在線段上,于,現(xiàn)將沿折起到的位置(如圖(2)).
(Ⅰ)求證:;
(Ⅱ)若,直線與平面所成的角為,求長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com