若點(diǎn)P為區(qū)域|x|+|y|≤1上的動(dòng)點(diǎn),試求z=ax+y(a為常數(shù))的最大值和最小值.
考點(diǎn):簡(jiǎn)單線性規(guī)劃的應(yīng)用
專(zhuān)題:計(jì)算題,不等式的解法及應(yīng)用
分析:區(qū)域|x|+|y|≤1為正方形區(qū)域,分類(lèi)討論,即可得出結(jié)論.
解答: 解:區(qū)域|x|+|y|≤1為正方形區(qū)域,故
當(dāng)a<-1時(shí),Zmax=-a,Zmin=a
當(dāng)-1≤a≤1時(shí),Zmax=1,Zmin=-1
當(dāng)a>1時(shí),Zmax=a,Zmin=-a
點(diǎn)評(píng):本題考查簡(jiǎn)單線性規(guī)劃的應(yīng)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C的圓心在直線3x-y=0上,且經(jīng)過(guò)點(diǎn)A(2,-3)、B(-1,0).
(1)求圓C的方程;
(2)若圓C被直線l:y=kx截得的弦長(zhǎng)為2
7
,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓:x2+y2+x-6y+3=0與直線x+2y-3=0的兩個(gè)交點(diǎn)為P、Q,求以P,Q為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知x=1是函數(shù)f(x)=
1
3
ax3-
3
2
x2+(a+1)x+5的一個(gè)極值點(diǎn).
(1)求函數(shù)f(x)的解析式;
(2)若曲線y=f(x)與直線y=2x-2m+1有三個(gè)交點(diǎn),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)g(x)=x2-(a+b)x+ab,其中a>0,b>0,函數(shù)f(x)=xg(x),
(1)當(dāng)x>0時(shí),函數(shù)g(x)的值恒為非負(fù)數(shù),且f(x)在x=1處取到極大值,求a的值;  
(2)若f(x)在x=x1和x=x2處分別取到極大值和極小值,記A[x1,f(x1)],B[x2,f(x2)],O是坐標(biāo)原點(diǎn),若直線OA與直線OB垂直,求a+b的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+lg(x+1)-2.
(1)求函數(shù)f(x)的定義域;
(2)證明函數(shù)f(x)在定義域內(nèi)為增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓M的方程x2+y2-2x-2y-6=0,以坐標(biāo)原點(diǎn)為圓心的圓N與圓M相切.
(1)求圓N的方程;
(2)過(guò)點(diǎn)M作兩條直線分別與圓N相交于A、B兩點(diǎn),且直線MA與MB的傾斜角互補(bǔ),試判斷直線MN和AB是否平行?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-x2+|x|+3
(1)作出函數(shù)f(x)的圖象;
(2)求f(x)的單調(diào)區(qū)間;
(3)判斷關(guān)于x的方程-x2+2|x|+3=a的解的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若函數(shù)f(x)=|4x-x2|-2a有4個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案