在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,a=
6
,b=2,且1+2cos(B+C)=0,則△ABC的BC邊上的高等于( 。
分析:由1+2cos(B+C)=0可得B+C=120°,A=60°,由余弦定理求得c值,利用△ABC的面積公式,可求BC邊上的高.
解答:解:△ABC中,由1+2cos(B+C)=0可得cos(B+C)=-
1
2
,∴B+C=120°,∴A=60°.
a=
6
,b=2,由余弦定理可得a2=b2+c2-2bc•cosA,
即6=4+c2-2×2c•
1
2
,解得c=1+
3

由△ABC的面積等于
1
2
bc•sinA=
1
2
ah,(h為BC邊上的高),∴2×(1+
3
3
2
=
6
h

可得h=
6
+
2
2
,
故選:C.
點(diǎn)評(píng):本題主要考查余弦定理的應(yīng)用,三角形的內(nèi)角和公式,考查三角形面積的計(jì)算,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,∠A、∠B、∠C所對(duì)的邊長(zhǎng)分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長(zhǎng)為20cm,求此三角形的各邊長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對(duì)邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,A,B,C為三個(gè)內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個(gè)單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來(lái)的
1
2

③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長(zhǎng)為原來(lái)的2倍.
(1)求f(x)的周期和對(duì)稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案